Skip to main content

A set of spaCy components to extract information from clinical notes written in French.

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.7.2

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris and AP-HP Foundation for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.7.2.tar.gz (1.3 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.7.2-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.7.2-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.7.2-cp38-cp38-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.7.2-cp37-cp37m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.7.2.tar.gz.

File metadata

  • Download URL: edsnlp-0.7.2.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for edsnlp-0.7.2.tar.gz
Algorithm Hash digest
SHA256 30ca998f3eb45e51f7e82ad66b00348d24a440d4dc72d97f70f998373e22c2c7
MD5 2d83d5c5fc3201e5695759b0173c5ca8
BLAKE2b-256 00018ae52bb17f42a0123f5b174e94c2a6d51212e7ecdd8806f3057af156cce1

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.7.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for edsnlp-0.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eb7fb7ecdedf5bf805cd18912a1b0bdf0b25c588c34706033850fd59d8333ed4
MD5 03e43679bdc63859c5a79317b755f443
BLAKE2b-256 d0b823fee78a0f0ebe3f18ed66417601841850bd91ee6290c1dce9fc871261f4

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7a3639ae81e0603eafd5ecbe7f41a08a738f607b3331430b18adc7bbccf98e48
MD5 03a35c746617f2f4285366f94de52cb5
BLAKE2b-256 a319b3f4368e70d1f6b9c8568c12617048b3ba2fbf9553926d420f5d36b5cf5d

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f863b5efb378fadab40e3f65ead36c00a6e4947969091fee935317e57329579b
MD5 50bb53ed83de72ab05019416ca863bee
BLAKE2b-256 4b6a40232006dd575dc4c3f75444c66667db6632fb059af19d713f44ea4a217a

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.7.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for edsnlp-0.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1cfb1392e999af9a702cbe86d830fa7ee5a972951d89d4e0da118c686e029734
MD5 153c0b1ee5824818c10881c0414d088a
BLAKE2b-256 59a0ee4c1b7a52afdc68032396bddfa1879a159c4470b10dbeb3b9ebe1fbb3fc

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93091641da50f686f061385e20bad772724e1d1f195ee91b91b2f5930a268421
MD5 21bd1715b4afc60de347b8da62ad67ae
BLAKE2b-256 99edadef6400c5615fe9a23d5478a97575c36566ec4b2e23de2cefbba8938172

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d7b107a11c110eb7fa7e295d5d62bdf1a7286a62f3d213791fd7ef5068b0ba9d
MD5 ec83824dec66dc408eb243278959995e
BLAKE2b-256 c4a3ef3601620239a60013fac1261c21d490f62bceec350d85d99d76578b0b1f

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.7.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for edsnlp-0.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2cedc782d6f225b56f64f48ebba9e1f6c4730bc86697743054e858a3567236a4
MD5 20d32ff389d0033d19090c26b8567ffb
BLAKE2b-256 2833ede4efb3c9c709c136c0eaef30013d15d1cdcce212d304662961024e98d9

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 292ddd3a0d574b3f94b4228e031b1f713ef49375a46e3554c2c18b2f9fd8fab4
MD5 7c0ae4d497eadb5106027a3e599a9194
BLAKE2b-256 6d3f7c948b8b77d6082f7da907449a2d76cff92a2cafdaf6b8290ec6b17ba63e

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 845efdf2610683a8519b9db7f06313ca695257d9dd16724f42b7895516cdf83a
MD5 702814fd1729184901cb6b2e3af70a36
BLAKE2b-256 043ec144e59bd9f0e9c615f0583f737fdcca73d9754c47927f3199ff3c09a53b

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.7.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for edsnlp-0.7.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2861d581dc4cfcaf6204821c7f072b5dafb542245f3053442431f16f3b0ff548
MD5 d9efb236dc8d0241581a22099da005c0
BLAKE2b-256 cafa9acbcf669b1f4baeed89059b80ecfd2c8331ad0cfdb628c120f23d910624

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91eb1c332bbba3140dc909445efc3659e11c23b84f2478c9ecdff50186026c98
MD5 c5b219135c6784db63bca8bc6d41ce0a
BLAKE2b-256 579aa307e10f04d18b70a1e1e624a46f6085d479a25c0dcc906ae980364ffcec

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.7.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6392f276dff38c70a7a252ca3356c822f29cce49e2aa1a7689e6c2e4d1692f23
MD5 6e9ffe53df3a03dcd5ced069f3b630ab
BLAKE2b-256 0db24b6ef92d419491daa9b38d7d8d3ad37afd2d5ac7765ea849ec0c535cb2cc

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page