Skip to main content

A set of spaCy components to extract information from clinical notes written in French

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.8.0

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.8.0.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.8.0-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.8.0-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.8.0-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.8.0-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.8.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.8.0.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.0.tar.gz
Algorithm Hash digest
SHA256 d4ed1ee4a33f1c1f7d22aa8b1d7c395b0109124f4722d2864b2ed3806fc04c27
MD5 5ca0958a9216ad8e3a974d97d080056c
BLAKE2b-256 7236addae1231a48a103eafd14ad4d1f26a81818e9916e8eb609587b6af5ea2b

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c62ba514211d78e0c9e5408b0fff38e95a8f8597057719f95edff4ac6233776b
MD5 4694df4070016df2ed409fbce6ee9004
BLAKE2b-256 37e7c75e1ca12873fe9869aa46b068423a5cafaa6fe4d884e6cc24259511147d

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b1036f35ce6c919354de46bdadf4a167e11a811f998782fa0a95f1a9c604c8b
MD5 ba6df2fbee01be36093ba4eb78ad28ba
BLAKE2b-256 949b2beabafec317099d11b09b1f880b84a8e30c36562316ae777f565a3dd98c

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9cc32e1b1e62ae1bd1d4946f543fe186cbfc87d2131b626241ca7bf43b824dcd
MD5 72f21b16e0c933bc2e49771917ae6906
BLAKE2b-256 5b552fd6978778d2c995310a59184686d46b63c45de1972f971c12c41c71a104

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8504ae989d536bc8c41daa97441872db835d7749638ca7a9fb768d44840831ad
MD5 1a40fc80c4ae6d924ec48ec17294b47d
BLAKE2b-256 b6ce91d62102f8ad6e07988b3c60a69bd55af2ec8913e4dbc1958322a14c00cb

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17b6c66f3b0c85bbce9ff57bd851fa9f876ea9e8b1676f19d012ebb3efa21dcf
MD5 882feb798a44f921aa8df86aa1a8ef78
BLAKE2b-256 3dbb3e95d3eafa27f462793658cef2b46e237337db44be36e1f0889e058adf42

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69b93971225a3f16e5be062e48e74bd7e271664617329afa5ba5dc230e87ee4c
MD5 8a1e5c31c5fd69ed4d51051122bf8f1c
BLAKE2b-256 edb635364a27c5a4a6eeb6078eca12750a2c28261f19fdf569b71733b55019c7

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fd2358c8e19637d6d2271690ee18da8b00ed200ec424669cd7457ab5ce9318d5
MD5 0b752a1975560ea64343dae4803554a7
BLAKE2b-256 25eec4975ad0a6dd56ec56eac41485b0b3f694d40dd175d984def0a4e89e975c

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcd0af0ccf25fe909a13547875f83db42e7c6872472b8c5efc73f7a841ae0c01
MD5 4e1c7def74ea21b2fbd8d28bc415d35b
BLAKE2b-256 e6d81582ed0850f19a7f9e2fa237e0b3a4c9b6f4b01a0d1f863ae94b306b5e37

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9cf6a734fe01d4abe87200926e70be302720ffaf7536443f1e8523ddd26df9c5
MD5 fb1a2c94ee4585d13f9853a6dc072571
BLAKE2b-256 a57811dbe29f206b37c3615f29deccf685d3b931fef818c6b86b07479d3eba5f

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d0f45f5c7435be817d09094f5bce4b7cb5a6db3feadfa7d23ce2df6de689cd41
MD5 d59dd84d6fc1a94e2bbfcbbd57d9acd0
BLAKE2b-256 36feece142c595a4eca427310fbac6bc3646358a9942e251159cc53895e67d92

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9d6c2545d75d8093ae8cbeaf2a22a8299993a1351f88e3707fc9895d29b4d0e4
MD5 21a2d2721814e2d1b8180363002c79ee
BLAKE2b-256 e41bef183e208ed5b9f824db55315910bf4d4f3b258d48ea7463d2a768d3e5c9

See more details on using hashes here.

File details

Details for the file edsnlp-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 926299783078f4929cc029f2b38105b4a2455a71a49d936b1b4b5e1a2d4ba089
MD5 aac4f91cc857683a364e9d01319ddca8
BLAKE2b-256 008436989c24eb94d72d51fa2524b50a0c1a6f4fa61bb7065a4ba042e46474db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page