Skip to main content

A set of spaCy components to extract information from clinical notes written in French

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.8.1

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("fr")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.8.1.tar.gz (1.4 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.8.1-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.8.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.8.1-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.8.1-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.8.1.tar.gz.

File metadata

  • Download URL: edsnlp-0.8.1.tar.gz
  • Upload date:
  • Size: 1.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.1.tar.gz
Algorithm Hash digest
SHA256 c70c171d5fb5213b88c34d7c715d1157d4c7a46582a515ff2ec6a65c0409d620
MD5 d9e22705684b6029488cfa6d9ea43605
BLAKE2b-256 aa303dccafdfb579d3c11513d65c0262edb7ce19430c0c77c33f014fc9e5e227

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 49d4d344d379be5ce1279adc166c1b1c7c5b47dd93d81a75402d6a4e2a45582d
MD5 c6e5f954d496e31c278f33707dde7bcc
BLAKE2b-256 28a6ebbc29e66c1943384afefd49b9c274495335e26d43eaa524156ccec74da4

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd0904bcdef07af266b14f8911ac32e14fbe8ae07ba02014f6383f070d00f57e
MD5 cee95357bb30c8636a59c689905b0228
BLAKE2b-256 bbbd11f1652bbcd7b6313cfe640bdbfc49975c18cd07aefc57a09e1045db30cd

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2442abb23d3e893bfac0603674610efcaaf5335b94f6dfec0ae434e3ebaf54f
MD5 771113f1f7de11ea946ce6f7d5c0e155
BLAKE2b-256 3bf5765e0604da81dad39aa465204596cefaffdd043c4fb8f03d32ef0fa91257

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4fe48bbf39a0de9f563ac30d91d8ac4db1bbaee597786672abd503759f1af30e
MD5 6cd3c57201959fb1e111f7e3fbc71c35
BLAKE2b-256 bfacbcfd106366e1d40298a472cf6b1e03829cccc8d2d64bd4a43482f0868797

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c5cb710ec6f1a1cfefe75ef18ee4599fc3ae25e0b44d10fc1f585ea18ae8f13
MD5 1d4895bce9d3a26c8af9511e96c98d9b
BLAKE2b-256 21d6dd1d683c588469624af8542d7d631d6b753174101b704ee56d067a254647

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5c9679db48d3929af3d0936954007dc5413d068292418a15364c284d4af59241
MD5 9fdf50b522e6ce10b178dceaa1e4f560
BLAKE2b-256 71003a37f00689e8de0db2cf5ffbc7834025d744713ffe85b41424b8ea94fc45

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6bcf490d7c8511f79199035f831c02bd852bbf12d64cf3aecb6032f6ecb6d0fb
MD5 1f7532a7cb61244de34dabe1f00672fa
BLAKE2b-256 3cdf87a780582deda98e2b65ef15459faaba6de084384183b9fa20d0ee578a8f

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16b57962aaa299f2ea7ed6d6f5ad8357425b74bba3ec409796d1aaba8599875b
MD5 198df7d7fd3a9b11cf04056e115d4496
BLAKE2b-256 973d9816203c323a5ab72c0a6f2b0a9b04a1543ac877638b244d1e8d413bb0f7

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02556af67b9f291e9e3ccb7209754cb6b170cf71d613731cfa5db93a5e810627
MD5 375cac0ee16f434ecb32a5f02ea87d6d
BLAKE2b-256 bb0f8d08090aeae6735540867884e3732c6ab66aff973ae3034cf2eb33b1882b

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for edsnlp-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2b84c73135b4cbe1b218cce6cf308c6ee851ae1b08ebb994941e5687d8af48fa
MD5 95299c757265ad713e71e768cd353843
BLAKE2b-256 5a16231e8667f421f6bb8a5389d4347fa3b03276f42304487dd75ba85c63af42

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b48ef8f486e1873a501e0533032a8effb4f672ffa25def1675ed5dd1b91522d3
MD5 b59fc568462f283412ed7bf228b5b62f
BLAKE2b-256 bc57d77b2ee48c5c8ef46b2b7cc6d0d2bd6a0259d0d2f63d6ecab9d68f4ec8ce

See more details on using hashes here.

Provenance

File details

Details for the file edsnlp-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3abfcd048362a90a7156545e0390bec4e74f769aee1a2bb80ab94e1a87761e9c
MD5 a328ce3ad35a7d38e834b0be58d7c703
BLAKE2b-256 c2c0170934cc92780a046ce9f27f7aca258799227dc1bb25dde106acea5d74f0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page