Skip to main content

A set of spaCy components to extract information from clinical notes written in French

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.9.0

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.9.0.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.9.0-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.9.0-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.9.0-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.9.0-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.9.0-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.9.0.tar.gz.

File metadata

  • Download URL: edsnlp-0.9.0.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.0.tar.gz
Algorithm Hash digest
SHA256 0a9b8cd0e143e5aec4120389a55f6de87bc5205de3c16ecce86f869f7d61c14c
MD5 27e9d4333ee4d099b9dee019751c84e3
BLAKE2b-256 dcb98029a03f917e17fc8f045d4499135193814e1cc94ecc7d8a28470a46af99

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.9.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 82ff8f44e3e90e67b680095e0dbe34bf86d5e61d2736ab9b89877f74f1990d3b
MD5 a9dde46e9d483dd8940ac1e6028141a9
BLAKE2b-256 cbe458e7b4862ef04893246f5e7e5d3c75f3c3adcb83099c352fd48e7e94922f

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eed3ceb2fdfa11b355b1a6c3bd53db7bb61ff0c96bc98f9a4f55a68a757c0441
MD5 dbab143c00cc1d6cdb7e86b376aa1a20
BLAKE2b-256 0116eb86e233d6f8b217e9add8c0fd388d699c82e212731955491c4e062d10e5

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 69c3c6d5c7bafb03008eea1683962eba2f035e3ba3032d0d613529ac0fcbb428
MD5 e3ca66a401f8ebf2ac6144c5a352704e
BLAKE2b-256 67edba3a2059b3062d8858a82f50ff70e7807242a63f671d3c8dbd72a1e2f9d2

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 744624ffcab9ff9afbb73d26cc0d48dff7fedb4f9571f6270f5e9c58d10ba17d
MD5 3177c738d2f9b072303b6c338ecf16bf
BLAKE2b-256 96df90cc5f3688af905c27812d667599360442e1af99b221bf94affc7449f5a2

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df102879e7af803928cac8ff83426daf3e6628b733cb516b43dac87e1b1f6a79
MD5 583e2f51270a3217fd1023c89abf9a26
BLAKE2b-256 0a3ffd9bd62f32d4c9a55dfe057cb5a7c8473efaead66a985120c08e2fc1b9dd

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35478e397eba19d12cebc9cc397921da479fdf5e77dbf596dbfec5dc0ea1b2d1
MD5 19c1f3ac2e660ae19c66c53016057e95
BLAKE2b-256 383a4d58906def3201afd0ddca12ff10649e95e4e1a01fa8deffa89e1e517079

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d20a3fb2c4bbfe5cbbc9d1123808999e1836d50ba7cd2854a1ac83ef92bf5af9
MD5 de05c1367fb406a9556128bfdce97bb5
BLAKE2b-256 1a09c8ebda27682fc04af298c0dc3c14b205b657dd0fa60beef6ff02022b341e

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8fe6a0eb0ca3ca1b7635c91e8804fb65ef13db74e3ab5cb30548b780f80f9946
MD5 79af3c62e78f045a355990c423e7c4b1
BLAKE2b-256 7522a6a0266387eee920bdc0d02d7eb0a9407b509fc7951c6ed8db143447ac20

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b0fee1211a0da8c212c4e6472cd2dde8a9b9fff4a13c4246ae86f5de1ffa8ce7
MD5 36c2b31382b7019e9374999fbf445514
BLAKE2b-256 dbfe04f126faad560571228aaa6aed09479193e07b48938943604bc71313a28e

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9d03782c70fd461a493eb2e95e66ef89d0c48ba7ce03070ea80524a457bb7001
MD5 0afc88e0a59f2bdd63a4595b4a35b383
BLAKE2b-256 377e84c8439970838073ec811699c90cc1cc1e5226fc1c82ad440c950ab8d84d

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b813d6adb1e5cc5b0e6359372c0189b65a36d6923b8669418c68585375a8426
MD5 d957256292fbd4b882b78e01d0c1b04d
BLAKE2b-256 7f8249e0db0f887450a2d0ae71750ade112897ad2c3cc0b3607a4b4eb16e2619

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b5f4ca51d0fb98561e1dfbcd3e5d2dcfabab03376a32ccc141f2b95e5b02ad78
MD5 46b76678db8cb7772ce7d75323165a48
BLAKE2b-256 a5e6f2b1181bd19fa0ceac4a5b10af87672491eb939a4a64f735bced1f67bfc6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page