Skip to main content

A set of spaCy components to extract information from clinical notes written in French

Project description

Tests Documentation PyPI Demo Codecov DOI

EDS-NLP

EDS-NLP provides a set of spaCy components that are used to extract information from clinical notes written in French.

Check out the interactive demo!

If it's your first time with spaCy, we recommend you familiarise yourself with some of their key concepts by looking at the "spaCy 101" page in the documentation.

Quick start

Installation

You can install EDS-NLP via pip:

pip install edsnlp

We recommend pinning the library version in your projects, or use a strict package manager like Poetry.

pip install edsnlp==0.9.1

A first pipeline

Once you've installed the library, let's begin with a very simple example that extracts mentions of COVID19 in a text, and detects whether they are negated.

import spacy

nlp = spacy.blank("eds")

terms = dict(
    covid=["covid", "coronavirus"],
)

# Sentencizer component, needed for negation detection
nlp.add_pipe("eds.sentences")
# Matcher component
nlp.add_pipe("eds.matcher", config=dict(terms=terms))
# Negation detection
nlp.add_pipe("eds.negation")

# Process your text in one call !
doc = nlp("Le patient est atteint de covid")

doc.ents
# Out: (covid,)

doc.ents[0]._.negation
# Out: False

Documentation

Go to the documentation for more information.

Disclaimer

The performances of an extraction pipeline may depend on the population and documents that are considered.

Contributing to EDS-NLP

We welcome contributions ! Fork the project and propose a pull request. Take a look at the dedicated page for detail.

Citation

If you use EDS-NLP, please cite us as below.

@misc{edsnlp,
  author = {Dura, Basile and Wajsburt, Perceval and Petit-Jean, Thomas and Cohen, Ariel and Jean, Charline and Bey, Romain},
  doi    = {10.5281/zenodo.6424993},
  title  = {EDS-NLP: efficient information extraction from French clinical notes},
  url    = {http://aphp.github.io/edsnlp}
}

Acknowledgement

We would like to thank Assistance Publique – Hôpitaux de Paris, AP-HP Foundation and Inria for funding this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

edsnlp-0.9.1.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

edsnlp-0.9.1-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

edsnlp-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

edsnlp-0.9.1-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

edsnlp-0.9.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

edsnlp-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

edsnlp-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

edsnlp-0.9.1-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

edsnlp-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

edsnlp-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

edsnlp-0.9.1-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

edsnlp-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

edsnlp-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file edsnlp-0.9.1.tar.gz.

File metadata

  • Download URL: edsnlp-0.9.1.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.1.tar.gz
Algorithm Hash digest
SHA256 c0c5dccca57c91415bc28f59d904dec05ea8a030acd8f8e0cfe15c9a83e5d03e
MD5 50ab83281fe79e471d6e975daf02793a
BLAKE2b-256 ba57f142ef7568ddb79fbdcec24c49d68b1c8ade9fea7cfa631b6302cddf6016

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.9.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6417e3b47da4a70b51975ebaafc01067f910fe0a9c8149ad2bded54e77c4d2a5
MD5 cc6ca70afe0707471d75e806b1c47454
BLAKE2b-256 3ccd2ce99795d3022f77dda0b53bf0e30dfd9b875ceaed434dc65ed01a06aacc

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65e0a2296a0d7091dd8f931d6ca8d7b00f5295f0d994d293688e2973c202f75e
MD5 4aaf04e7f3296676f2a935ecbeada559
BLAKE2b-256 dd02818d37840cdefc64041740a28de87816e3e58750757e7f5579d53c15c60e

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 914004d687d8e000b7bb81ce58124c5b716b6875a2dfce1e56eea006eef29d3b
MD5 97c5ea5ce794cd4d6e41924c761a1df3
BLAKE2b-256 4f3bc7e46a4b0578f53bd040969b199fa2d7b51520f35c5c5512d757545082d8

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8694dc531cee77dde820545eaa9803b622be89c90b8a9dd025f23d9318c9cd01
MD5 2544fe3cd97b8e0d000f12cd0a40fe8a
BLAKE2b-256 a6e8fc422d5a6261d8b838920f93619ab8dc67f216eda7bdfc63c957fa2b7535

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb703d4dbea041df426068c8837ffb031ddaaef8503ca9cec2f249467b9bfbf7
MD5 fbe90f9085b5a3f898d4473d086dc906
BLAKE2b-256 1eb0d7f04528f87db48fb9444e83c3770d35420314315d717ef9a50cab5cfe82

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a375c296bd30ea231ae10cb17a64d11f97072ce5719654ac56d40ac1294dab54
MD5 b487968144aa7f2564775fa0417d9c04
BLAKE2b-256 d38efebc8bb70cd45b445296a6050a4cfff0f61963332d3c749675682025131f

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ad08a5b705c1408f4d0e10edcd28325bc3ef51c6992c8bbdab93902c4ce26334
MD5 871ea6575dfc26cde411f582304ace47
BLAKE2b-256 92a82fd84060828582dbef8a3e715c184fb692d04072a9055450dc502691f327

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f1bd66e5e3b627ec1cb8ef1477e02e13e3632157db2f6e971803d9fdcebeb03
MD5 9ce69afb911f3e0a5ef75e98b4ee9eee
BLAKE2b-256 2cff4785a9161cab5acf5b9918bd75c9ec0a8bd23f39f9a357d1d26f4954d147

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60f1efde52971bbd765459fa3201a609239f50086cdb58d70ae36fdf62272ebc
MD5 556c0965a60953755dc23be7b1034482
BLAKE2b-256 bbb413b36d540dbb11b2a62526c5756e0f21c8c85beea116fee73f6ac9cb35da

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: edsnlp-0.9.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for edsnlp-0.9.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 393cced15b96a106e6d57d9625c69f312fe46c6f0b73ed9e580dd722fff88efe
MD5 200df357e9d91e9e350d575f3de98277
BLAKE2b-256 7abfc52dfe1ef5c510416801129d948037d3dcb9c551aa75ca1668657b121d3a

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 436ba88ac635e7a311f06d13c408a97bfe0b5a05cd00119aa0d1c94b1938bf72
MD5 2aaf11e1ffb073a97e42310363866bea
BLAKE2b-256 5bd9ad909f28c3f80fed8caad368f1f2329ff06b207d3914382a8fed2a26a9ed

See more details on using hashes here.

File details

Details for the file edsnlp-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for edsnlp-0.9.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48f09f809a0e806200fefd52e648914a73219b2c14606ecb369923be49062515
MD5 9ce8d6b9b63b186541ad59f40527f9c2
BLAKE2b-256 c56127726b4c509b45b749aa189cbb536d4ee830f099985a6a20ae1289183324

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page