Skip to main content

pure effects for Python

Project description

Effect

https://travis-ci.org/radix/effect.svg?branch=master

Effect is a library for helping you write purely functional code by isolating the effects (that is, IO or state manipulation) in your code.

You can read the core module, it’s pretty short.

Status: Alpha

Right now Effect is in alpha, and is likely to change incompatibly. Once it’s being used in production, I’ll release a final version.

What Is It?

It’s a number of things, depending on your perspective:

  • the IO monad for Python, or

  • an immutable/purely functional version of Twisted’s Deferred, or

  • a way to improve test quality, by promoting “stub” objects to the real implementation

  • a way to decouple the “intent” of an effect from the implementation, thus allowing alternative implementations of effects.

Each of these perspectives has a section below describing that approach.

Effect starts with a very simple idea: instead of having a function which performs side-effects (such as IO):

def get_user_name():
    return raw_input("Enter User Name> ")

you instead have a function which returns a representation of the side-effect:

def get_user_name():
    return Effect(ReadLine("Enter User Name> "))

We call objects like “ReadLine” an intent – that is, the intent of this effect is to read a line.

This function now returns an object which can later be “performed”:

def main():
    effect = get_user_name()
    effect = effect.on(success=print)
    perform(effect)

This has a number of advantages. First, your unit tests for get_user_name become simpler. You don’t need to mock out or parameterize the raw_input function - you just call get_user_name and assert that it returns a ReadLine object with the correct ‘prompt’ value.

Second, you can implement ReadLine in a number of different ways - it’s possible to override the implementations of effects to do whatever you want.

Third, your function is now purely functional, letting you rest easy knowing that you’ve improved the amount of quality code in the world ;-)

For more information on how to implement the actual effect-performing code, and other details, see the API documentation

Callback chains

Effect allows you to build up chains of callbacks that process data in turn. That is, if you attach a callback a and then a callback b to an Effect, a will be called with the original result and b will be called with with the result of a. This is inspired directly by Twisted’s Deferreds.

This is a great way to build end-to-end abstractions, compared to non-chaining callback systems like Python’s Futures. You can easily build abstractions like the following:

def request_url(method, url, str_body):
    """Perform an HTTP request."""
    return Effect(Request(method, url, str_body))

def request_200_url(method, url, str_body):
    """
    Perform an HTTP request, and raise an error if the response is not 200.
    """
    return request_url(method, url, str_body).on(success=check_status)

def json_request(method, url, dict_body):
    """
    Perform an HTTP request where the body is sent as JSON and the response
    is automatically decoded as JSON if the Content-type is
    application/json.
    """
    str_body = json.dumps(dict_body)
    return request_url(method, url, str_body).on(success=decode_json)

The monadic bind function has these same properties. Those Haskell people sure have some good ideas.

Learning more

I’ve tried to ensure that the docstrings of all the public functions and classes are up to snuff. There are also real-world examples available in the examples directory, including how to write idiomatic tests.

Following are a number of sections where the utility of the Effect library is highlighted from a number of different use cases.

IO Monad for Python

Effects are vaguely analogus to IO monads. The Effect class can be compared to the IO type, which tags (or wraps) your result type, and Effect.on is somewhat like the bind function (>>=), indicating that the function passed is to be called with the result of the effect. Haskell’s Either can be thrown in to handle .on(success=...) vs .on(error=...).

But Effect is a little more than just the IO monad, since Effects make available the intent as transparent data. By transparent, I specifically mean that it should be an inert data structure with public attributes describing everything necessary to perform the effect. In Haskell, a function that returns IO a can only be returned up to main and performed – there is no way to introspect what the function wants to do (for, e.g., testing purposes).

Representing effects as transparent data gives us two advantages:

  • the ability to provide alternative implementations (such as an asynchronous Twisted-based implementation, or a standard blocking implementation), since the effect performance is late-bound to the effect intent.

  • the ability to perform simple value comparisons in your unit tests to ensure the right effects will be performed.

Of course these use cases have also been solved in Haskell. Quite interesting is the recent work being done with free monads, and the idea of “parsing”, or more accurately interpreting, effect-relying code written in a domain-specific language in a way so as to not actually perform those effects. For more information on this work, see:

http://programmers.stackexchange.com/questions/242795/what-is-the-free-monad-interpreter-pattern

http://debasishg.blogspot.com/2013/01/a-language-and-its-interpretation.html

https://skillsmatter.com/skillscasts/4429-simon-marlow

To say the least, this would be difficult to fit into Python.

Immutable Deferreds

There are two main differences between Effects and Deferreds, and one is only conventional. One, of course, is that Effects are immutable. The second is that the functions that produce Effects are (or can be) pure.

In almost every case, Deferred-producing functions must have side effects. They kick off some IO and tuck the Deferred away somewhere so they can fire it later.

Functions that produce Effects, on the other hand, should not have side-effects. They should simply describe the intent of the effect. They don’t need to tuck the Effect away to fire later, because that whole process comes later, when the effect is performed.

In some sense, an Effect is an inside-out Deferred – instead of performing the effects in the innermost function that produces the Deferred, with callbacks being attached on the way out, the effect is performed after the whole tree of callbacks has been constructed, higher up the stack.

This avoids the problems with Deferred that require it to have a special garbage-collection handler to log errors that haven’t yet been handled – we know that when all of an Effect’s callbacks have been run, no more can possibly be attached, so we can immediately raise an exception if the final result was an error (this is the behavior of the sync_perform function).

Testability by promoting stub objects

In unit tests, we often use stub objects to replace objects that are considered “expensive”, or otherwise difficult to deal with. The Effect library encourages the promotion of these stub objects to the implementation. This allows us to stop worrying if our stub is close enough to the real thing, since it is the real thing – if the stub is wrong, the effect implementation wouldn’t work.

Alternative effect implementations

Effect is a good way to write code that can be used in any number of IO frameworks: either with standard blocking IO, or with an asynchronous IO system like Twisted or asyncio (or Trollius, or Tornado, or eventlet, etc etc). This is because it forces you to decouple the plain, pure functions that perform only the work between IO from the IO work itself.

A history of the development

For pedagogical purposes, I’ll describe the thought process that led me to write this library. There were a couple of desires that led to me thinking about this problem.

First, I had been thinking for a long time that more of my code should be purely functional. The benefits of pure FP code are well understood, if not fully accepted by the majority of programmers. Needless to say, I buy into it.

I long had the idea that an HTTP client library, for example, should separate the request from the performance of that request. My ideal client would return an inert “Request” object from the http.get() method, instead of actually performing the IO.

At the same time, I had also been struggling with testing in the Python ecosystem. Mocking and stubbing have become extremely widespread in the community, but over and over I saw that the result of ubiquitous usage of mocking were test suites that were extremely difficult to understand and maintain. I saw test suites that were overly tied to the implementation of code under test, and much duplicated mock boilerplate – code that would set up detailed mocks that were very subtly different from test to test.

For a while, I thought that “verified fakes” would solve the problem. Instead of having every one of your tests mocking out the specific IO methods that a piece of implementation code will use, write a class that implements the same interface as the IO code and acts on a test model. This is a good way to do it, but then you have to concern yourself with ensuring the fake has the same behavior as the real implementation.

Then I realized that stubs were a lot like my idea for the “Request” object that my ideal HTTP client library would return – in other words, the stubs could be promoted to being used in the real implementation. That way the majority of my tests wouldn’t need any mocking or stubbing, and would just invoke the pure ‘get’ method and ensure that it returned a Request object that looked right.

Once I got serious about writing code that was purely functional and which returned transparent objects I quickly came to the conclusion that just returning a Request object wasn’t enough. I realized I needed end to end abstractions. Specifically, for example, I wanted an HTTP client abstraction that could specify a request and process the result – by checking to see if the response code was something other than 200 and raising an error, for example. Or automatically decoding JSON responses to Python objects.

Basically, I needed callbacks, or the >>= operator from Haskell. Deferreds are a great abstraction for callbacks, but I wanted something purely functional, and which let you decouple the intent of the effect from the performance of the effect. From all these ideas came the Effect library.

Thanks

Thanks to Rackspace for allowing me to work on this project, and having an excellent open source employee contribution policy

See Also

Over the past few years, the ecosystem of libraries to help with functional programming in Python has exploded. Here are some libraries I recommend:

  • pyrsistent - persistent (optimized immutable) data structures in Python

  • toolz - a general library of pure FP functions

  • fn.py - a Scala-inspired set of tools, including a weird lambda syntax, option type, and monads

License

Effect is licensed under the MIT license:

Copyright (C) 2014 Christopher Armstrong

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

effect-0.1a11.tar.gz (17.8 kB view hashes)

Uploaded Source

Built Distribution

effect-0.1a11-py2.py3-none-any.whl (26.4 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page