Python elasticsearch client to analyse, explore and manipulate data that resides in elasticsearch.
Project description
What is it?
eland is a Elasticsearch client Python package to analyse, explore and manipulate data that resides in Elasticsearch. Where possible the package uses existing Python APIs and data structures to make it easy to switch between numpy, pandas, scikit-learn to their Elasticsearch powered equivalents. In general, the data resides in Elasticsearch and not in memory, which allows eland to access large datasets stored in Elasticsearch.
For example, to explore data in a large Elasticsearch index, simply create an eland DataFrame from an Elasticsearch index pattern, and explore using an API that mirrors a subset of the pandas.DataFrame API:
>>> import eland as ed
>>> # Connect to 'flights' index via localhost Elasticsearch node
>>> df = ed.DataFrame('localhost:9200', 'flights')
>>> df.head()
AvgTicketPrice Cancelled Carrier ... OriginWeather dayOfWeek timestamp
0 841.265642 False Kibana Airlines ... Sunny 0 2018-01-01 00:00:00
1 882.982662 False Logstash Airways ... Clear 0 2018-01-01 18:27:00
2 190.636904 False Logstash Airways ... Rain 0 2018-01-01 17:11:14
3 181.694216 True Kibana Airlines ... Thunder & Lightning 0 2018-01-01 10:33:28
4 730.041778 False Kibana Airlines ... Damaging Wind 0 2018-01-01 05:13:00
[5 rows x 27 columns]
>>> df.describe()
AvgTicketPrice DistanceKilometers DistanceMiles FlightDelayMin FlightTimeHour FlightTimeMin dayOfWeek
count 13059.000000 13059.000000 13059.000000 13059.000000 13059.000000 13059.000000 13059.000000
mean 628.253689 7092.142457 4406.853010 47.335171 8.518797 511.127842 2.835975
std 266.386661 4578.263193 2844.800855 96.743006 5.579019 334.741135 1.939365
min 100.020531 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 410.008918 2470.545974 1535.126118 0.000000 4.194976 251.738513 1.000000
50% 640.362667 7612.072403 4729.922470 0.000000 8.385816 503.148975 3.000000
75% 842.254990 9735.082407 6049.459005 15.000000 12.009396 720.534532 4.141221
max 1199.729004 19881.482422 12353.780273 360.000000 31.715034 1902.901978 6.000000
>>> df[['Carrier', 'AvgTicketPrice', 'Cancelled']]
Carrier AvgTicketPrice Cancelled
0 Kibana Airlines 841.265642 False
1 Logstash Airways 882.982662 False
2 Logstash Airways 190.636904 False
3 Kibana Airlines 181.694216 True
4 Kibana Airlines 730.041778 False
... ... ... ...
13054 Logstash Airways 1080.446279 False
13055 Logstash Airways 646.612941 False
13056 Logstash Airways 997.751876 False
13057 JetBeats 1102.814465 False
13058 JetBeats 858.144337 False
[13059 rows x 3 columns]
>>> df[(df.Carrier=="Kibana Airlines") & (df.AvgTicketPrice > 900.0) & (df.Cancelled == True)].head()
AvgTicketPrice Cancelled Carrier ... OriginWeather dayOfWeek timestamp
8 960.869736 True Kibana Airlines ... Heavy Fog 0 2018-01-01 12:09:35
26 975.812632 True Kibana Airlines ... Rain 0 2018-01-01 15:38:32
311 946.358410 True Kibana Airlines ... Heavy Fog 0 2018-01-01 11:51:12
651 975.383864 True Kibana Airlines ... Rain 2 2018-01-03 21:13:17
950 907.836523 True Kibana Airlines ... Thunder & Lightning 2 2018-01-03 05:14:51
[5 rows x 27 columns]
>>> df[['DistanceKilometers', 'AvgTicketPrice']].aggregate(['sum', 'min', 'std'])
DistanceKilometers AvgTicketPrice
sum 9.261629e+07 8.204365e+06
min 0.000000e+00 1.000205e+02
std 4.578263e+03 2.663867e+02
>>> df[['Carrier', 'Origin', 'Dest']].nunique()
Carrier 4
Origin 156
Dest 156
dtype: int64
>>> s = df.AvgTicketPrice * 2 + df.DistanceKilometers - df.FlightDelayMin
>>> s
0 18174.857422
1 10589.365723
2 381.273804
3 739.126221
4 14818.327637
...
13054 10219.474121
13055 8381.823975
13056 12661.157104
13057 20819.488281
13058 18315.431274
Length: 13059, dtype: float64
>>> print(s.info_es())
index_pattern: flights
Index:
index_field: _id
is_source_field: False
Mappings:
capabilities:
es_field_name is_source es_dtype es_date_format pd_dtype is_searchable is_aggregatable is_scripted aggregatable_es_field_name
NaN script_field_None False double None float64 True True True script_field_None
Operations:
tasks: []
size: None
sort_params: None
_source: ['script_field_None']
body: {'script_fields': {'script_field_None': {'script': {'source': "(((doc['AvgTicketPrice'].value * 2) + doc['DistanceKilometers'].value) - doc['FlightDelayMin'].value)"}}}}
post_processing: []
>>> pd_df = ed.eland_to_pandas(df)
>>> pd_df.head()
AvgTicketPrice Cancelled Carrier ... OriginWeather dayOfWeek timestamp
0 841.265642 False Kibana Airlines ... Sunny 0 2018-01-01 00:00:00
1 882.982662 False Logstash Airways ... Clear 0 2018-01-01 18:27:00
2 190.636904 False Logstash Airways ... Rain 0 2018-01-01 17:11:14
3 181.694216 True Kibana Airlines ... Thunder & Lightning 0 2018-01-01 10:33:28
4 730.041778 False Kibana Airlines ... Damaging Wind 0 2018-01-01 05:13:00
[5 rows x 27 columns]
See docs and demo_notebook.ipynb for more examples.
Where to get it
The source code is currently hosted on GitHub at: https://github.com/elastic/eland
Binary installers for the latest released version are available at the Python package index.
pip install eland
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.