Skip to main content

The Python ensemble sampling toolkit for MCMC

Project description

The Python ensemble sampling toolkit for affine-invariant MCMC

https://img.shields.io/badge/GitHub-dfm%2Femcee-blue.svg?style=flat https://github.com/dfm/emcee/workflows/Tests/badge.svg http://img.shields.io/badge/license-MIT-blue.svg?style=flat http://img.shields.io/badge/arXiv-1202.3665-orange.svg?style=flat https://coveralls.io/repos/github/dfm/emcee/badge.svg?branch=main&style=flat&v=2 https://readthedocs.org/projects/emcee/badge/?version=latest

emcee is a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the Astrophysics literature.

Documentation

Read the docs at emcee.readthedocs.io.

Attribution

Please cite Foreman-Mackey, Hogg, Lang & Goodman (2012) if you find this code useful in your research. The BibTeX entry for the paper is:

@article{emcee,
   author = {{Foreman-Mackey}, D. and {Hogg}, D.~W. and {Lang}, D. and {Goodman}, J.},
    title = {emcee: The MCMC Hammer},
  journal = {PASP},
     year = 2013,
   volume = 125,
    pages = {306-312},
   eprint = {1202.3665},
      doi = {10.1086/670067}
}

License

Copyright 2010-2021 Dan Foreman-Mackey and contributors.

emcee is free software made available under the MIT License. For details see the LICENSE file.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

emcee-3.1.0rc1.tar.gz (2.9 MB view details)

Uploaded Source

Built Distribution

emcee-3.1.0rc1-py2.py3-none-any.whl (45.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file emcee-3.1.0rc1.tar.gz.

File metadata

  • Download URL: emcee-3.1.0rc1.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for emcee-3.1.0rc1.tar.gz
Algorithm Hash digest
SHA256 41913bb20c3c31da74644354ec71480383606e4ba4145926dcf1bc9e75bc0844
MD5 a400d9dd1e6e065995f8168b650fe4f5
BLAKE2b-256 eba1cee49a8906c45361e66e8fe9d6415b2c038dcd9bb0afadd0add4de24d7af

See more details on using hashes here.

File details

Details for the file emcee-3.1.0rc1-py2.py3-none-any.whl.

File metadata

  • Download URL: emcee-3.1.0rc1-py2.py3-none-any.whl
  • Upload date:
  • Size: 45.9 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for emcee-3.1.0rc1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 6d5f6ae459bce658e60b7fd643904bfafcaf125439a659546e908de4ffe1e2f7
MD5 1e28068f04c1eba1570a49fe36197e0b
BLAKE2b-256 46d1fd7e65b6402a56e4d86758c7f802a99a36c06f835d993bc2a5a32f31027e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page