Skip to main content

Generalisation of neuronal electrical models with MCMC

Project description

DOI

emodel-generalisation

Generalisation of neuronal electrical models on a morphological population with Markov Chain Monte-Carlo.

This code accompanies the paper:

Arnaudon, A., Reva, M., Zbili, M., Markram, H., Van Geit, W., & Kanari, L. (2023). Controlling morpho-electrophysiological variability of neurons with detailed biophysical models. iScience, 2023.

Installation

This code can be installed via pip with

git clone git@github.com:BlueBrain/emodel-generalisation.git
pip install .

Examples

We provide several examples of the main functionalities of the emodel-generalisation code:

Citation

When you use the emodel-generalisation code or method for your research, we ask you to cite:

Arnaudon, A., Reva, M., Zbili, M., Markram, H., Van Geit, W., & Kanari, L. (2023). Controlling morpho-electrophysiological variability of neurons with detailed biophysical models. iScience, 2023.

To get this citation in another format, please use the Cite this repository button in the sidebar of the code's github page.

Funding & Acknowledgment

The development of this code was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology.

For license and authors, see LICENSE.txt and AUTHORS.md respectively.

Copyright 2022-2023 Blue Brain Project/EPFL

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

emodel_generalisation-0.2.11.tar.gz (18.1 MB view details)

Uploaded Source

Built Distribution

emodel_generalisation-0.2.11-py3-none-any.whl (133.1 kB view details)

Uploaded Python 3

File details

Details for the file emodel_generalisation-0.2.11.tar.gz.

File metadata

File hashes

Hashes for emodel_generalisation-0.2.11.tar.gz
Algorithm Hash digest
SHA256 b84822a1ae0a4b53728b55f6dcfd291ca59d6244f2430650699333ba93e372a8
MD5 81aa95c24875ddaea5315b937ca03659
BLAKE2b-256 ad081bf4c321caa47b66536033ce8f5ee17e8158d94d1d5950e6f02fdcf78ba9

See more details on using hashes here.

Provenance

File details

Details for the file emodel_generalisation-0.2.11-py3-none-any.whl.

File metadata

File hashes

Hashes for emodel_generalisation-0.2.11-py3-none-any.whl
Algorithm Hash digest
SHA256 b26b577990025109f98c9077c43bf90e7a0ebeb2fd7fe46bbb5eecb356e64106
MD5 62c50f236a4b49c444cea8edcf233bed
BLAKE2b-256 966046d41e2baac83964880793f4b627a209e35a1423249b690716525c024c58

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page