Skip to main content

xarray extension that supports EMS model formats

Project description

emsarray

Binder Documentation Status Conda Version

The emsarray package provides a common interface for working with the many model formats used at CSIRO. It enhances xarray Datasets and provides a set of common operations for manipulating datasets.

To use, open the dataset using the emsarray.open_dataset() function and use the dataset.ems attribute:

import emsarray
from shapely.geometry import Point

dataset = emsarray.tutorial.open_dataset('gbr4')
capricorn_group = Point(151.869, -23.386)
point_data = dataset.ems.select_point(capricorn_group)

Some methods take a DataArray as a parameter:

# Plot the sea surface temperature for time = 0
temp = dataset['temp'].isel(time=0, k=-1)
dataset.ems.plot(temp)

Plot of sea surface temperature from the GBR4 example file

A number of operations provide further functionality to manipulate datasets, export geometry, and select subsets of data:

from emsarray.operations import geometry
geometry.write_geojson(dataset, './gbr4.geojson')
geometry.write_shapefile(dataset, './gbr4.shp')

Examples

Examples of using emsarray are available in the emsarray-notebooks repository. You can explore these notebooks online with Binder.

Developing

To get set up for development, make a virtual environment and install the dependencies:

$ python3 -m venv
$ source venv/bin/activate
$ pip install --upgrade pip>=21.3
$ pip install -e . -r continuous-integration/requirements.txt

Tests

To run the tests, install and run tox:

$ python3 -m venv
$ source venv/bin/activate
$ pip install --upgrade pip>=21.3 tox
$ tox

Documentation

To build the documentation, install the development requirements as above and invoke Sphinx:

$ make -C docs/ html

While updating or adding to the documentation, run the live target to automatically rebuild the docs whenever anything changes. This will serve the documentation via a livereload server.

$ make -C docs/ live

You can the view the docs at http://localhost:5500

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

emsarray-0.3.1.tar.gz (67.7 kB view details)

Uploaded Source

Built Distribution

emsarray-0.3.1-py3-none-any.whl (77.6 kB view details)

Uploaded Python 3

File details

Details for the file emsarray-0.3.1.tar.gz.

File metadata

  • Download URL: emsarray-0.3.1.tar.gz
  • Upload date:
  • Size: 67.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for emsarray-0.3.1.tar.gz
Algorithm Hash digest
SHA256 c328195d79c82c9f70c7ce8f7329af8068365e99aa0b215ffb8011eef91f09f5
MD5 aa9923595e9daa0fb015a281178b53ea
BLAKE2b-256 42746a71e7dc5dafe83b924acc626080896b73c28305b2141dacfb096f44aa3c

See more details on using hashes here.

File details

Details for the file emsarray-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: emsarray-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 77.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for emsarray-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e7bb42ef603286d5d7814bf7ab18ee279c6da37493f34f1b19def827ca4a0bff
MD5 bf99908c7a842202ff6e261f5c540b9c
BLAKE2b-256 1c55468c0bd52da343dc966ca70019c0315c39deec1cdfbf4af6412ab8bd2e3e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page