Skip to main content

A development environment management tool for data scientists.

Project description

envd

Development environment for data science and AI/ML

continuous integration envd package donwloads discord invitation link trackgit-views all-contributors

โš ๏ธ envd is still under heavy development, and subject to change. it is not feature-complete or production-ready. Please contact us in discord if there is any problem.

envd is a machine learning development environment for data science and AI/ML engineering teams.

๐Ÿ No Docker, only Python - Focus on writing Python code, we will take care of Docker and development environment setup.

๐Ÿ–จ๏ธ Built-in Jupyter/VSCode - First-class support for Jupyter and VSCode remote extension.

โฑ๏ธ Save time - Better cache management to save your time, keep the focus on the model, instead of dependencies.

โ˜๏ธ Local & cloud - envd integrates seamlessly with Docker so that you can easily share, version, and publish envd environments with Docker Hub or any other OCI image registries.

๐Ÿ” Repeatable builds & reproducible results - You can reproduce the same dev environment on your laptop, public cloud VMs, or Docker containers, without any change in setup.

Why use envd?

It is still too difficult to configure development environments and reproduce results in AI/ML applications.

envd is a machine learning development environment for data science and AI/ML engineering teams. Environments built with envd provide the following features out-of-the-box:

๐Ÿ Life is short, use Python[^1]

Development environments are full of Dockerfiles, bash scripts, Kubernetes YAML manifests, and many other clunky files that are always breaking. envd builds are isolated and clean. You can write simple instructions in Python, instead of Bash / Makefile / Dockerfile / ...

envd

[^1]: The build language is starlark, which is a dialect of Python.

โฑ๏ธ Save you plenty of time

envd adopts a multi-level cache mechanism to accelerate the building process. For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before. It saves plenty of time, especially when you update the environment by trial and error.

envd

Docker[^2]

$ envd build
=> pip install tensorflow       5s
+ => Using cached tensorflow-...-.whl (511.7 MB)
$ docker build
=> pip install tensorflow      278s
- => Downloading tensorflow-...-.whl (511.7 MB)

[^2]: Docker without buildkit

โ˜๏ธ Local & cloud native

envd integrates seamlessly with Docker, you can share, version, and publish envd environments with Docker Hub or any other OCI image registries. The envd environments can be run on Docker or Kubernetes.

๐Ÿ” Repeatable builds & reproducible results

You can reproduce the same dev environment, on your laptop, public cloud VMs, or Docker containers, without any change in setup. You can also collaborate with your colleagues without "let me configure the environment in your machine".

๐Ÿ–จ๏ธ Seamless experience of Jupyter/VSCode

envd provides first-class support for Jupyter and VSCode remote extension. You benefit without sacrificing any developer experience.

Who should use envd?

Weโ€™re focused on helping data scientists and teams that develop AI/ML models. And they may suffer from:

  • building the development environments with Python, CUDA, Docker, SSH, and so on. Do you have a complicated Dockerfile or build script that sets up all your dev environments, but is always breaking?
  • Updating the environment. Do you always need to ask infrastructure engineers how to add a new python package in the Dockerfile?
  • Managing environments and machines. Do you always forget which machines are used for the specific project, because you handle multiple projects concurrently?
Before envd After envd

Documentation

See envd documentation.

Getting Started

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip. After the installation, please run envd bootstrap to bootstrap.

pip install --pre envd
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+] โŒš parse build.envd and download/cache dependencies 2.8s โœ… (finished)     
 => download oh-my-zsh                                                    2.8s 
[+] ๐Ÿ‹ build envd environment 18.3s (25/25) โœ… (finished)                      
 => create apt source dir                                                 0.0s 
 => local://cache-dir                                                     0.1s 
 => => transferring cache-dir: 5.12MB                                     0.1s 
...
 => pip install numpy                                                    13.0s 
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s 
 => mkfile /home/envd/install.sh                                          0.0s 
 => install oh-my-zsh                                                     0.1s 
 => mkfile /home/envd/.zshrc                                              0.0s 
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s 
 => exporting to oci image format                                         2.4s 
 => => exporting layers                                                   2.0s 
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
(envd) โžœ  demo git:(master) โœ— # You are in the container-based environment!

Play with the environment

You can run ssh envd-quick-start.envd to reconnect if you exit from the environment. Or you can execute git or python commands inside.

$ python demo.py
[2 3 4]
$ git fetch
$

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter(password="", port=8888)

You can get the endpoint of the running Jupyter notebook via envd get envs.

$ envd up --detach
$ envd get env
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID 
envd-quick-start        http://localhost:8888   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

Contribute

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Contributors โœจ

Thanks goes to these wonderful people (emoji key):


Aaron Sun

๐Ÿ““ ๐Ÿ’ป

Aka.Fido

๐Ÿ“ฆ ๐Ÿ“–

Ce Gao

๐Ÿ’ป ๐Ÿ“– ๐ŸŽจ ๐Ÿ“†

Jian Zeng

๐ŸŽจ ๐Ÿค” ๐Ÿ”ฌ

Jinjing Zhou

๐Ÿ› ๐Ÿ’ป ๐ŸŽจ ๐Ÿ“–

Jun

๐Ÿ“ฆ ๐Ÿ’ป

Keming

๐Ÿ’ป ๐Ÿ“– ๐Ÿค” ๐Ÿš‡

Kevin Su

๐Ÿ’ป

Ling Jin

๐Ÿ› ๐Ÿš‡

Manjusaka

๐Ÿ’ป

Siyuan Wang

๐Ÿ’ป ๐Ÿš‡ ๐Ÿšง

Xu Jin

๐Ÿ’ป

Xuanwo

๐Ÿ’ฌ ๐ŸŽจ ๐Ÿค” ๐Ÿ‘€

Yuan Tang

๐Ÿ’ป ๐ŸŽจ ๐Ÿ“– ๐Ÿค”

Yuchen Cheng

๐Ÿ› ๐Ÿš‡ ๐Ÿšง ๐Ÿ”ง

Zhenzhen Zhao

๐Ÿš‡ ๐Ÿ““ ๐Ÿ’ป

Zhizhen He

๐Ÿ’ป

jimoosciuc

๐Ÿ““

kenwoodjw

๐Ÿ’ป

xing0821

๐Ÿค” ๐Ÿ““

This project follows the all-contributors specification. Contributions of any kind welcome!

License

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.1.0.tar.gz (148.4 kB view details)

Uploaded Source

Built Distributions

envd-0.1.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.1.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.1.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.1.0-cp310-cp310-musllinux_1_1_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.1.0-cp39-cp39-musllinux_1_1_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.1.0-cp38-cp38-musllinux_1_1_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.1.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.1.0.tar.gz.

File metadata

  • Download URL: envd-0.1.0.tar.gz
  • Upload date:
  • Size: 148.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for envd-0.1.0.tar.gz
Algorithm Hash digest
SHA256 16f7b620bfff983078f184fd3592551f0f530d550fecd9dde46d329921dc9a94
MD5 9131d2f2224669485641ac79a6504673
BLAKE2b-256 293241d0fc6f9a917bacd926d8671c1b0b6eba7bf298e2cd12dd65e3d8fcdb61

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4021ecb7e114b2d17f9d6c01d4477867bdffbc4a8f6df9182ef9375a3974807b
MD5 9c0a8e639922a16df5994574ea9a6364
BLAKE2b-256 4a8f4f4e4480beb7fbc62ff40a606aa1ec38bf21f9b66a8c286aca71e74978ee

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/2.7.18

File hashes

Hashes for envd-0.1.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ced3fcc6fb03b6aab873816eaa1e9bc694cf92889a68ead91ff660518c249a72
MD5 7b242458cde1a263eaf6e570b1bf2cee
BLAKE2b-256 422fe6e20b51d1bf816998d5fbfb3b89b2eedaf80e85f3ee8b7182eb5e2b6a19

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b266554d32f613b9cdb63f392d8c1d3bc5552d1572840ef367a369da0f2e53b9
MD5 fe5b2920b7efb32a4bc678afb1958f18
BLAKE2b-256 fbefb3198898062080eeefbda5ef447e72572ffe77b8583703490d5d70735296

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/2.7.18

File hashes

Hashes for envd-0.1.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 778f43e245f63170dcd2e35aca817c937062a6a3b6997ed8c0a23de7f7592c03
MD5 fc3616d152cecedf52703ae606e13b5b
BLAKE2b-256 4295c8c806e4cea4981bcb576731f03cf32766df282722d3d1abed925fc3b7f9

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 380ccafc6ef1cf7325a07d548f543d1e87d39134d6d55c2ad51bba4dd2e8d480
MD5 e3acd572fe844af45d47f64b93197558
BLAKE2b-256 49295c98b70224c5652a306bdafb29470266e4b378e37366ee9f4d74f6faaba6

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/2.7.18

File hashes

Hashes for envd-0.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 296832e93143447ab17eef7b436e589220b267ee4b26d6117e474a55bc310e66
MD5 778984593eea47536eac513a7cd364a9
BLAKE2b-256 6a56c34dfea442df0057f3dc13fa3ae3f146c0be91c3020c8ca46620197f2595

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 abfea1fb9aebe56f38bee6eb617a0db0711cd26d477044cb67e2d4a58c9c16ee
MD5 63ae4e6e974ea51ee82db6b331de9e99
BLAKE2b-256 19d484858595cacad32cd4127185e7f6629b28678fecbc4695fe83b67015f249

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c23ee1d7a82c0557e31324cdb3dd932e8bc019c96ab63e8c64d5f2051de2563e
MD5 7476f668bc9176832eeaac4a4dbf46e0
BLAKE2b-256 8f610561944f3dff2b494bb286e1e41ff23168accba5163fc10bea811ca44e60

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/2.7.18

File hashes

Hashes for envd-0.1.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 720ef312140035e68f40f2b69027c33d5f31bec40c1f83a69124333c9c085559
MD5 07d665700bcc1733c9470c59e988612e
BLAKE2b-256 94d7ec94f8497ed1a14070aee7d28ec1403da8f65f9d2534181bb6909f0fb4a7

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dba72439f211a0b38b86a1d8ced02a289349bcfdb58b9c90ba2867a6e7b3ce5e
MD5 48b6c0516f6f4f1bf068a98fb86ba0f5
BLAKE2b-256 6e3da4357b58a7c6744205954edb61d6621625c896236c926929c121e64e35e9

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9de46b35f1abe4195ce873dff6706610857cd1c900667330e81226e6a8fe2344
MD5 68ecdd82d8cef608af0cf70c23096b4c
BLAKE2b-256 2cafd256e08a95792ae4833edf09c503907ff8c1564750bdc18c2b5ab3c4c80f

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/2.7.18

File hashes

Hashes for envd-0.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7701c35d5fd396a2567ff7f9eb7be5721f494ff3e17eab587eb7a8e5e3fddebe
MD5 d987358fb63b8c919c756be408f16f09
BLAKE2b-256 6e06ace2f5dbbca7b4b13586f1c348724661fd2d6eae50a2ba8c87da5934f453

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 da9d4830317f749d0a509b3aa451a14bc5d5a9389711187bf134da37e8859708
MD5 47f3bc748c08cd6f961ef7141efabd40
BLAKE2b-256 d2bc20faa75b6d98a220536344ce61b90c8ebca75291491646a673a76ba62181

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 863c0d366ac7b733eff012a066b26e1659dd7469490e908598a689739ca75f71
MD5 23b317ee9c382e637ec210b27fca051b
BLAKE2b-256 e253b0b2ace26d29672ecd50698e7fcbdb4ebc5fffeb620db4b118cd5758b58d

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/2.7.18

File hashes

Hashes for envd-0.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 92c7d8fa3dbc35d79a64a105f94c4373f276a046bb4ee054e1707f8b81593464
MD5 54f723931ab457df3c485fb067e1f2ba
BLAKE2b-256 48f052b70f8ddb55af2fbd605ae12368ca3250582b5374630aae2b7f28d81eae

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e6b8245d9ffcc9b8f3d84fde437222b79dda2dd7cc5e5f1fd7aa3adcff3c8a16
MD5 c0d64d157eabef7595458bcdfedc8fb1
BLAKE2b-256 81c275db179f2e67d3dd3003fef3f1aa16f91d0885a87b1dc439201c16e58804

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75844aab7463c5ef7580e9e68faabd70151ea3ec95958dce26c7c3be7d0746bc
MD5 885f9f2d4d1f17042a2ef34e2abb7f6c
BLAKE2b-256 2724eb48dd164a273343d553f14cc820ad44d503e9d15299214d38722ddf3326

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/2.7.18

File hashes

Hashes for envd-0.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 968794092be725332e4bb819960aa839c90895ff0d6da80769e2c766c4cba541
MD5 590a4d9eca15d4cde2dbeeafeebbce53
BLAKE2b-256 6ab306d1375b8ac1eab11b2b6d001d491699bc29d7d21599bb6cb40a2a0e6582

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 504fbae6cbf54620481789d95be5af49c764a77e9fe0f02cbdf840d0ae63dbc2
MD5 a552f2dca82db4fe8c765f2bb5844486
BLAKE2b-256 81d685e7c459804cc1929cadeaeb05640923aacbc86fdeb5d324470348af0281

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.1.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e016f9b8bcb80d939cd47aacbd89a81448c42882467db73159cb60d53962b050
MD5 ce3a8f448e8f792f657e5370bc2b9b3f
BLAKE2b-256 c762a86f22125ab3d99fadd94f8e1823e67ec84b2a56bb02b17ae5a31c5c15d2

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 8.8 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/2.7.18

File hashes

Hashes for envd-0.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ced56ca479a0189d438314a508f01d0c7a5bdd054269e48391e08f95b7b8ca79
MD5 6b9869cb916f79eb6b9c5466c5afede8
BLAKE2b-256 6c2238cb1e0fe023564b56b3ccb540f968a8da4330b1ab7cf9b64c4ac52d9a4a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page