Skip to main content

A development environment management tool for data scientists.

Project description

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❤️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(envd_port=6006, envd_dir="/home/envd/logs",
        host_port=0, host_dir="/var/log/tensorboard"):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                "/home/envd/logs",
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
                ">>tensorboard.log",
                "2>&1",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

🐍 One configuration to rule them all

Development environments are full of Dockerfiles, bash scripts, Kubernetes YAML manifests, and many other clunky files that are always breaking. You just need one configuration file build.envd[^1], it works both for local Docker and Kubernetes clusters in the cloud.

envd

[^1]: The build language is starlark, which is a dialect of Python.

✍️ Don't sacrifice your developer experience

SSH is configured for the created environment. You can use vscode-remote, jupyter, pycharm or other IDEs that you love. Besides this, declare the IDE extensions you want, let envd take care of them.

def build():
    install.vscode_extensions([
        "ms-python.python",
    ])

☁️ No polluted environment

Are you working on multiple projects, all of which need different versions of CUDA? envd helps you create isolated and clean environments.

Who should use envd?

We’re focused on helping data scientists and teams that develop AI/ML models. And they may suffer from:

  • building the development environments with Python/R/Julia, CUDA, Docker, SSH, and so on. Do you have a complicated Dockerfile or build script that sets up all your dev environments, but is always breaking?
  • Updating the environment. Do you always need to ask infrastructure engineers how to add a new Python/R/Julia package in the Dockerfile?
  • Managing environments and machines. Do you always forget which machines are used for the specific project, because you handle multiple projects concurrently?

Talk with us

💬 Interested in talking with us about your experience building or managing AI/ML applications?

Set up a time to chat!

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip (only support Python3). After the installation, please run envd bootstrap to bootstrap.

pip3 install --pre --upgrade envd
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+] ⌚ parse build.envd and download/cache dependencies 2.8s ✅ (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25) ✅ (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd 
⬢ [envd]❯ # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):


Friends A.

📖 🎨

Aaron Sun

📓 💻

Aka.Fido

📦 📖 💻

Bingyi Sun

💻

Ce Gao

💻 📖 🎨 📆

Guangyang Li

💻

Gui-Yue

💻

Haiker Sun

💻

Ikko Ashimine

💻

Jian Zeng

🎨 🤔 🔬

Jinjing Zhou

🐛 💻 🎨 📖

Jun

📦 💻

Keming

💻 📖 🤔 🚇

Kevin Su

💻

Ling Jin

🐛 🚇

Manjusaka

💻

Nino

🎨

Pengyu Wang

📖

Sepush

📖

Siyuan Wang

💻 🚇 🚧

Wei Zhang

💻

Xu Jin

💻

Xuanwo

💬 🎨 🤔 👀

Yuan Tang

💻 🎨 📖 🤔

Yuchen Cheng

🐛 🚇 🚧 🔧

Yuedong Wu

💻

Yunchuan Zheng

💻

Zheming Li

💻

Zhenguo.Li

💻 📖

Zhenzhen Zhao

🚇 📓 💻

Zhizhen He

💻 📖

jimoosciuc

📓

kenwoodjw

💻

nullday

🤔 💻

wyq

🐛 🎨 💻

xiangtianyu

📖

xing0821

🤔 📓 💻

zhyon404

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.2.3.tar.gz (227.5 kB view details)

Uploaded Source

Built Distributions

envd-0.2.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.3-cp311-cp311-musllinux_1_1_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

envd-0.2.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.3-cp311-cp311-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

envd-0.2.3-cp310-cp310-musllinux_1_1_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.2.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.3-cp310-cp310-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.2.3-cp39-cp39-musllinux_1_1_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.2.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.3-cp39-cp39-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.2.3-cp38-cp38-musllinux_1_1_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.2.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.3-cp38-cp38-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.2.3-cp37-cp37m-musllinux_1_1_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.2.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.3-cp37-cp37m-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.2.3-cp36-cp36m-musllinux_1_1_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.2.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.3-cp36-cp36m-macosx_10_9_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.2.3.tar.gz.

File metadata

  • Download URL: envd-0.2.3.tar.gz
  • Upload date:
  • Size: 227.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for envd-0.2.3.tar.gz
Algorithm Hash digest
SHA256 cba6526ec05c99b5beeda67da4d7a3013bbe60769c2a00ccfcf6449cc3d3af8c
MD5 efaa593694908bc72a69fb4708e68b7c
BLAKE2b-256 4cd1b2265fe7961c70fe1b946d91ceeb5476cc31e7ec8447cc8dc6aefaa403d7

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 494a91b1265c3852c7bd171c2685f409aa96e61f64a595ac6d33377a6d42567f
MD5 06cb08e6ce10fe7b689fdcea6b35715e
BLAKE2b-256 df7b6ed8ed03598237842c648d4005f0e2117160fed8e13c98bc688de6f7396d

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0fdc52021188612fd2451070aa0202ef60ab0290980645d45e4e27b656cc1505
MD5 15fa167ca41066eceb5daa194e5f5513
BLAKE2b-256 9422d0c91d851c5cc274abc2fc4fd8a74e95e55553c11eb49334e8e966732fa7

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1082af4dca642e5a62a50074f0dc39f1113cb0f73271dd9538b0da80ddb140ca
MD5 5abee3ecdae111f057963b0155515edd
BLAKE2b-256 fa25f12a073f9be4d4d879624959e51e167a2eb3cb8e0bdf31beab18aabb46af

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cde733dafc7264b9996729ef6e7c215331dacd642d17b29103501eefba5a0909
MD5 7f3892ad999b1d25bec6d3750ba0142a
BLAKE2b-256 dc497a5839002ca48f6ba3b1a3943a0edade896f7af894df4f0c30601f31a219

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c80040b9c822328f871c88a5513366ac4ac13968851099bef9f2f96f8ceddf60
MD5 bd3e36852f9ef52a33e929143ed337bf
BLAKE2b-256 286ffb928c00659bb200bf88d287dbccbf7f85f0f1bf7f34b51cc2e528585945

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cced24957aa5b5d0640927a14b12d6ecd589990a61c5a36da3b5413b124898f8
MD5 27364dd9f95500d0b0f3ec4487487f20
BLAKE2b-256 b5d34ea76a6dfc704d9b991c7660487d556c7a2d2696ddf76cabc42170f347a7

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3c71faa7699352f2abd4da48f3edb1a697964bd5c63a8984766ce34b77f3666d
MD5 3635dd03c0357d1cf5e19b90eddc5503
BLAKE2b-256 5598d297007128f0f000cd117504dbfdd3f74b10a64e2b90156082f1456d2642

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23b2e08e7aa7b54907e0e5c513441b9797cf4d5c590dcc4bc554735cfc2b596e
MD5 09deb42a6ad9309ab54c596158c51d48
BLAKE2b-256 e85bc80481a5ae247159a6e9d85c035ed1da368e4e1b4b2cd13f1bfeb5033481

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.3-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4bef2b20297bcd0d61d4799b35a442f34c97e73cc43467a68e76733bbd8d0560
MD5 9137a57f6dd1542cb434e5415d4c8694
BLAKE2b-256 0502dd5d39a2b9820ddda667855bc63a72f4d0b4355cf07e7e3995167a45e44d

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fb61b146220d4f8f12f2e2906d7cf08b40fe3e09ab10838d7b5968951f85cd14
MD5 60c5336f8910fc96e68d5699b3c913df
BLAKE2b-256 eb062cae9180e3ec594689b489d1c9c8d262b6ed123b1ed3318ee818ae2e1aa2

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40b59e56406bafcbab8000924c43334fc70074274df1f6421e65011e3562cde1
MD5 57fb5e42969889383187d23a81f4c56f
BLAKE2b-256 8d8878b96a60dcd1e6bfbda5d4bff5fc46bf0a9fe0e14f483e32a448fc466943

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.3-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2f4a3e368c63a521567313e2a2c1d7c17075333bbc7906e41dc679c92e367a3
MD5 6734711d850a3aa9f96da47a70f28ba2
BLAKE2b-256 592e553a21cddf90a49fbe5bffda070d0be8ba34db525b1e483319c2bf2cfb24

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3af5696b31124349266ee17f44311715884834e8d7b0996ede82e1f671d5525c
MD5 a77a8bddfe735d041546b8097396dfdb
BLAKE2b-256 23da60aac8212fee0542d493b04fa07c3501996bb8972d6b10c99a697b185732

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78eb550f80ba6389fe162003fed65ab55766ca529a365247436924af9fd585e1
MD5 ce7d98dce40f9b96e8de7278cef46c71
BLAKE2b-256 fc42f6cb9c0a5b328afadcf9b1a6f8fe851a84c1542a4907c2ab5c86c30bade8

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bda994f33a368d72d9a70c86beb049a32427154aa238bec13c56b4c326e39140
MD5 fd2fe14caf100771c07ef51aa599091e
BLAKE2b-256 92b6a6452187d9eb4273294f13ea7fbbd0ab175f441bba62360f270e60ce12c6

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 954aa1db48c71e8e14a78ef010e9a84a9a53891800f671fde12b119ac9510ada
MD5 b2319280002ef56bcf55ddc0ca46e7a3
BLAKE2b-256 587a46e87bda4907e2cd7a07cc58dc7966503cee8611976e370425870fdb2502

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68f59d1720b49f05d28b571cbafcdc180e19d32d671c3b399cd1b4f3e9e016ad
MD5 e91e44fd9d3dbe11b86d00a3b34af057
BLAKE2b-256 20873307886bd89cb08952c86e2d1a8e86a916f0337a5c2de516d450bff95bcd

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19f120e0b91cc063e3c586dd96510698e73beff6ddb922a287c0156f75df5e90
MD5 ec33884a5a7f1544919c55587e1c21d6
BLAKE2b-256 e30e9f501731f28425b54d27c1be7048fbc1cc330762c90f3871de6ee5303875

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 66e8c069df9d241cbea3763e3fbdcaea24feba6fd416bb46c919f92308191a87
MD5 510fceee7786dd86fe855771c7a9eb29
BLAKE2b-256 8c28936e881cb697abd1385078524cc1d45ae487cec33e41d33537f2cf163bbe

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d38727f39228bf781814c7e586f263bcda7fa740965380907d23bb1de04c394d
MD5 dda6756f708892973ad7c9cecb21b8f6
BLAKE2b-256 2f24f43285e9ce0156db65aa799aff88223c3175e70db6e0dc55bfc8e95a0305

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93e1d60ee747d0c5795e9d64edf2f02590a7eb2f5986a25bd9de2595f393db6f
MD5 fd1d9687b7e77e95252960ab3ac765a1
BLAKE2b-256 aa0e3014694c3e2ef911792467ba3e46b8538dad2a13ede5f2a8740af9ff8370

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 95ed10c65daa25f8de90eee60135bc45fc4a5b299f68473f91dc42372a761df8
MD5 16eb1bf8669a0075a4448c5b65cf2ec4
BLAKE2b-256 269caad5ae4719e8dacffc09602c3982f8e48c6ddbe9fd427a2992b0d26ef724

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bff85f22581a10d21caf3772121d7195a4f92a9ba8d2d0796d2694c453ad2880
MD5 289d07c0385d36b33352c11895b19313
BLAKE2b-256 2539496d9a568fa683baa03787e5a6a02eaa36bfeeeef299f3425feda52d691b

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.1 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6b87a43689ef64da9a675c25e6aa615362303ac0c93eeedbae767004e5f5c843
MD5 503dfce4b0a18ac78aea58a314f33ba3
BLAKE2b-256 664e4e0b5599a9e32ac8d5c1caf1be37891f1cbbbcf06a65177d78a9bd5326b1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page