Skip to main content

A development environment management tool for data scientists.

Project description

this slowpoke moves

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

explain

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❤️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(envd_port=6006, envd_dir="/home/envd/logs",
        host_port=0, host_dir="/var/log/tensorboard"):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                "/home/envd/logs",
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
                ">>tensorboard.log",
                "2>&1",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

🐍 One configuration to rule them all

Development environments are full of Dockerfiles, bash scripts, Kubernetes YAML manifests, and many other clunky files that are always breaking. You just need one configuration file build.envd[^1], it works both for local Docker and Kubernetes clusters in the cloud.

envd

[^1]: The build language is starlark, which is a dialect of Python.

✍️ Don't sacrifice your developer experience

SSH is configured for the created environment. You can use vscode-remote, jupyter, pycharm or other IDEs that you love. Besides this, declare the IDE extensions you want, let envd take care of them.

def build():
    install.vscode_extensions([
        "ms-python.python",
    ])

☁️ No polluted environment

Are you working on multiple projects, all of which need different versions of CUDA? envd helps you create isolated and clean environments.

Who should use envd?

We're focused on helping data scientists and teams that develop AI/ML models. And they may suffer from:

  • building the development environments with Python/R/Julia, CUDA, Docker, SSH, and so on. Do you have a complicated Dockerfile or build script that sets up all your dev environments, but is always breaking?
  • Updating the environment. Do you always need to ask infrastructure engineers how to add a new Python/R/Julia package in the Dockerfile?
  • Managing environments and machines. Do you always forget which machines are used for the specific project, because you handle multiple projects concurrently?

Talk with us

💬 Interested in talking with us about your experience building or managing AI/ML applications?

Set up a time to chat!

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip (only support Python3). After the installation, please run envd bootstrap to bootstrap.

pip3 install --pre --upgrade envd
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+]  parse build.envd and download/cache dependencies 2.8s  (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25)  (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd
⬢ [envd] # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):

 Friends A.
Friends A.

📖 🎨
Aaron Sun
Aaron Sun

📓 💻
Aka.Fido
Aka.Fido

📦 📖 💻
Bingyi Sun
Bingyi Sun

💻
Ce Gao
Ce Gao

💻 📖 🎨 📆
Guangyang Li
Guangyang Li

💻
Gui-Yue
Gui-Yue

💻
Haiker Sun
Haiker Sun

💻
Ikko Ashimine
Ikko Ashimine

💻
JasonZhu
JasonZhu

💻
Jian Zeng
Jian Zeng

🎨 🤔 🔬
Jinjing Zhou
Jinjing Zhou

🐛 💻 🎨 📖
Jun
Jun

📦 💻
Keming
Keming

💻 📖 🤔 🚇
Kevin Su
Kevin Su

💻
Ling Jin
Ling Jin

🐛 🚇
Manjusaka
Manjusaka

💻
Nino
Nino

🎨 💻
Pengyu Wang
Pengyu Wang

📖
Sepush
Sepush

📖
Siyuan Wang
Siyuan Wang

💻 🚇 🚧
Tumushimire Yves
Tumushimire Yves

💻
Wei Zhang
Wei Zhang

💻
Weizhen Wang
Weizhen Wang

💻
XRW
XRW

💻
Xu Jin
Xu Jin

💻
Xuanwo
Xuanwo

💬 🎨 🤔 👀
Yijiang Liu
Yijiang Liu

💻
Yilong Li
Yilong Li

📖 🐛
Yuan Tang
Yuan Tang

💻 🎨 📖 🤔
Yuchen Cheng
Yuchen Cheng

🐛 🚇 🚧 🔧
Yuedong Wu
Yuedong Wu

💻
Yunchuan Zheng
Yunchuan Zheng

💻
Zheming Li
Zheming Li

💻
Zhenguo.Li
Zhenguo.Li

💻 📖
Zhenzhen Zhao
Zhenzhen Zhao

🚇 📓 💻
Zhizhen He
Zhizhen He

💻 📖
jimoosciuc
jimoosciuc

📓
kenwoodjw
kenwoodjw

💻
nullday
nullday

🤔 💻
wangxiaolei
wangxiaolei

💻
wyq
wyq

🐛 🎨 💻
xiangtianyu
xiangtianyu

📖
xing0821
xing0821

🤔 📓 💻
zhyon404
zhyon404

💻
杨成锴
杨成锴

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Star History

Star History Chart

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.2.4.tar.gz (253.6 kB view details)

Uploaded Source

Built Distributions

envd-0.2.4-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (9.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.4-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (9.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.4-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (9.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.4-cp311-cp311-musllinux_1_1_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

envd-0.2.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.4-cp311-cp311-macosx_10_9_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

envd-0.2.4-cp310-cp310-musllinux_1_1_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.2.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.4-cp310-cp310-macosx_10_9_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.2.4-cp39-cp39-musllinux_1_1_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.2.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.4-cp39-cp39-macosx_10_9_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.2.4-cp38-cp38-musllinux_1_1_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.2.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.4-cp38-cp38-macosx_10_9_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.2.4-cp37-cp37m-musllinux_1_1_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.2.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.4-cp37-cp37m-macosx_10_9_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.2.4-cp36-cp36m-musllinux_1_1_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.2.4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.4-cp36-cp36m-macosx_10_9_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.2.4.tar.gz.

File metadata

  • Download URL: envd-0.2.4.tar.gz
  • Upload date:
  • Size: 253.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for envd-0.2.4.tar.gz
Algorithm Hash digest
SHA256 49af013389d692ede2d1ac18a794d917ce2738b01987dcdb70e09078c0e6e629
MD5 9906ab243e978b3a8b120956f3d84c96
BLAKE2b-256 99cd67d2e123bde3b2af6547d9dca40bbe43341d3a63e380dd13b8a5773965d6

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17df765eb70564481e35eef30a2c4b567e6f3463d96f4d2a705f24286cb463d8
MD5 6547119f27b64ad8d8aab1ff73ba2d6a
BLAKE2b-256 5a28cbc99cfb6914aca0fe3270f8202a627426b6f701cc07d5aa5a13ef351dcc

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e8d3e50f2cd4924a2aecb77294b2f5e58eafb74d1338387d6a147a31f7936c4
MD5 b7730c5f3c020e043c4e7bf5bfa19cb1
BLAKE2b-256 8439272f4e8fe36c24991e611c81134c95a65806692b30e6a855f9974f07c7b9

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 478b6e2cf55746b6342eab067b7051080b07bef5c7d977d443eeffdaf56a6c4d
MD5 48f8b95e7f65e9b5869022364e4fe09c
BLAKE2b-256 fd6db0e135af155bf00f8d0f13d9beb735b36bcd108e1b7cacd00fd9ae76c68e

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 29fc48ef85afb3fa0943030c9c8e5b37a4ca29f15deaba941e129788f54020c5
MD5 a7d9150687d0397f56aa32c525986221
BLAKE2b-256 c6cb62cb342925b3d6808a337f817db3c795a072137c60fcb9c0a45d7d51a943

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5a3724eb60eee12b11ca8fbde6e0f8c40bcce1fd8a35489e97b6314f2e84ab4
MD5 ea3afc0a03a06b72713dbfac226e2ae7
BLAKE2b-256 29cd4fb354862ec3d71114f54e47da53f6a10a90b87435cd263f45adead60fa0

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12999746a726ae20001803082ab0c06708f1438241ae0a5d3116c65ac63ef8b4
MD5 956953405caa8630fddfe225ad3a5fd4
BLAKE2b-256 88f690fb177956f7d2e575751bdd00d799012baacd5f3a91f3d4ab0b8f24299e

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4954a5917c00a9511246c46f94319ca0c1b220217a39be51ab42283b7cd6a979
MD5 10860cf089e3b95542a6a033b927e516
BLAKE2b-256 b2c9252188f96bf83d4faf87dae480ccbd049b918e342d5944473a1622971eeb

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37ae3a782269c238220f79850ecf4fa3035adb20463722e4688a12c2247f3695
MD5 e7232fa5e89101f5d5c2b30c98969f4b
BLAKE2b-256 003d51bcc319d1f0010b8a092dcb8658138b8b51356a7eb58bb6ba85229a412c

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.4-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b4052c820b5e58f5efc7b2c9718f2db410aa1dd63e483f919179fe069ec48a7
MD5 a1342bbbf1d7249d788bd01868558d27
BLAKE2b-256 b97800668cb8ec5f1cfe15416f508fe67d351a1b1a42769206b67a04227baf7e

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 de74793e75917c60c5215504258ac131273899d37080f226988a250d15fabb28
MD5 3ccdeea0d81c1b819609093e4d5b6be0
BLAKE2b-256 dff5e07a457e7f074697fcfd4811527d290eb2a9058d2c735822a127d717082d

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09352b165278c6dad37e9cd6e3fc7be94944c2dffddcf1dc2e3f562a3d0b67c2
MD5 6db85b72774cfa22fe5d2c275209306d
BLAKE2b-256 e427cf9dea5ed9d9289ea6314026bfbbeab9a7364bb2b9e52c9478fafed426d9

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.4-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a43c7164fcb8d847dc56e69b82ebd8509c66a2abb1bb784f4c6b58ea758f64cd
MD5 bce777b08aef49e38ffc798308699c4c
BLAKE2b-256 0c01807e9f67dee3f4de6496cdb980766a1aad3135f233ef037d4ccfab1e3a8c

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a5ca8f3f7ec164b7a0e05d1f038774e20c4beb2b4ab4d67569ad82abda8879bd
MD5 3dbc33637a1548bc285b7cf735f66cdb
BLAKE2b-256 53f6f5b34989e96091886987c72b54b06db7ae2aed9d91b26e1d4d03f9357675

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b137cf351ac92dfe06132676ab313bf7dc7ba880084aacc5fd1176e5a0880b5b
MD5 8a5d440da1cc761692033c22e8bde40b
BLAKE2b-256 caa3eb7cc439d992c58bb25066ac41d53457b2c11d3d778171211c702f6a81d9

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.4-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b2b6d2b628b04ba74df568975f762af41b9061968c394f3d38bcbd5740a01a3d
MD5 7610f8dedea758c10bfa02784683d8de
BLAKE2b-256 bcbf07ad6038bc02ca4018bf58de9f651885892f415115f240b2b5d624ede058

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 80e4d2ec481907edf618417ef63b813342219432066f53095d22090e7efb710c
MD5 750aca86d40c8811a2f9c72053c79606
BLAKE2b-256 a91e40d9312f132458d2e6435bc1cc1332e0cfb575ed70957f6db018f5360523

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63ca6782a02dde27c078c44d4f49aa161f706af725d9b7df97560a45c5b7b1ad
MD5 bff37a62df274e147a35eabb867e3372
BLAKE2b-256 250f0bd52a64ba71c59d04eb957970572ec0d4850bb111cbf33d398a352b7e6f

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.4-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a376614bdffc4fb8be99f9ba05783625d8d6cfede0b1336597836ffc82d2be7
MD5 2ffb0c64da42cb5c6989b8ee4873992d
BLAKE2b-256 596b1e95ccfa91f0e5999d32ceabf57df87b80724936997c12cec0597aaf214f

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3306523f3f6dcb05dd89ee37c708e22930f6055b8fd831d625375a46eb88f3f3
MD5 38f1f7440de8ec264e86d54c01567092
BLAKE2b-256 707b333651a8001e6a52188d706e42556c14d1603845f0b86499e91c3cffd439

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 896c296d0ca64b5cb75320e98b4d48ec4aa109077d13f1858078cc115e868b18
MD5 ddab04b2b84e7601f2789e4263f9b98c
BLAKE2b-256 d0e459c8abcca75cce70a0a9558513a859ac626cde17479eaa32bf0a882be607

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.4-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f00f3fd4c0a0fab14425bac19965256d13dddfba5eadded8521be8c0f93a557
MD5 854a93ff0888b9b92c3c109f8e2a2ddb
BLAKE2b-256 7da3beecb6073f492e7bfaa9cd4d98d4e4bba4e4598ded9fa2a9a2f8d84026e1

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 41db14b1e3ae30b9d10ecb3f6ad603f067c1c53d38ae86cdc620a09f8f6e36d0
MD5 ad3de12294146be5b66311cc6acd5574
BLAKE2b-256 33762c76bb629a2193c95afc755c0266894934838c8951ff054360b813d4bec2

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d520267aebc6d9c5653e75bb2709656286e38de7035f687cdd8870cd997b463
MD5 9ccbc0e56f5fb73cbec6069cc7576b67
BLAKE2b-256 f7cb8bfa00c429c2e6a0d42156046e38542995113fe3e35b5b2647b80a20a7ba

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.4-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d78179fb078b15af81ddd8918cb4d31c5859bfcd8abe9143c7345721b260447
MD5 dbbd8f02a2b4813f6fa0729a041eaaf9
BLAKE2b-256 2690dd91e8a4daa9f50a25aeb27e0afcdbbeaf75270298b9f361271b514065bd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page