Skip to main content

A development environment management tool for data scientists.

Project description

envd cat wink envd cat wink

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

explain

explain

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❤️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(envd_port=6006, envd_dir="/home/envd/logs",
        host_port=0, host_dir="/var/log/tensorboard"):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                "/home/envd/logs",
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
                ">>tensorboard.log",
                "2>&1",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

🐍 One configuration to rule them all

Development environments are full of Dockerfiles, bash scripts, Kubernetes YAML manifests, and many other clunky files that are always breaking. You just need one configuration file build.envd[^1], it works both for local Docker and Kubernetes clusters in the cloud.

envd

[^1]: The build language is starlark, which is a dialect of Python.

✍️ Don't sacrifice your developer experience

SSH is configured for the created environment. You can use vscode-remote, jupyter, pycharm or other IDEs that you love. Besides this, declare the IDE extensions you want, let envd take care of them.

def build():
    install.vscode_extensions([
        "ms-python.python",
    ])

☁️ No polluted environment

Are you working on multiple projects, all of which need different versions of CUDA? envd helps you create isolated and clean environments.

Who should use envd?

We're focused on helping data scientists and teams that develop AI/ML models. And they may suffer from:

  • building the development environments with Python/R/Julia, CUDA, Docker, SSH, and so on. Do you have a complicated Dockerfile or build script that sets up all your dev environments, but is always breaking?
  • Updating the environment. Do you always need to ask infrastructure engineers how to add a new Python/R/Julia package in the Dockerfile?
  • Managing environments and machines. Do you always forget which machines are used for the specific project, because you handle multiple projects concurrently?

Talk with us

💬 Interested in talking with us about your experience building or managing AI/ML applications?

Set up a time to chat!

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip (only support Python3). After the installation, please run envd bootstrap to bootstrap.

pip3 install --pre --upgrade envd
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+]  parse build.envd and download/cache dependencies 2.8s  (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25)  (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd
⬢ [envd] # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):

 Friends A.
Friends A.

📖 🎨
Aaron Sun
Aaron Sun

📓 💻
Aka.Fido
Aka.Fido

📦 📖 💻
Bingyi Sun
Bingyi Sun

💻
Ce Gao
Ce Gao

💻 📖 🎨 📆
Guangyang Li
Guangyang Li

💻
Gui-Yue
Gui-Yue

💻
Haiker Sun
Haiker Sun

💻
Ikko Ashimine
Ikko Ashimine

💻
Isaac
Isaac

💻
JasonZhu
JasonZhu

💻
Jian Zeng
Jian Zeng

🎨 🤔 🔬
Jinjing Zhou
Jinjing Zhou

🐛 💻 🎨 📖
Jun
Jun

📦 💻
Keming
Keming

💻 📖 🤔 🚇
Kevin Su
Kevin Su

💻
Ling Jin
Ling Jin

🐛 🚇
Manjusaka
Manjusaka

💻
Nino
Nino

🎨 💻
Pengyu Wang
Pengyu Wang

📖
Sepush
Sepush

📖
Siyuan Wang
Siyuan Wang

💻 🚇 🚧
Tumushimire Yves
Tumushimire Yves

💻
Wei Zhang
Wei Zhang

💻
Weizhen Wang
Weizhen Wang

💻
XRW
XRW

💻
Xu Jin
Xu Jin

💻
Xuanwo
Xuanwo

💬 🎨 🤔 👀
Yijiang Liu
Yijiang Liu

💻
Yilong Li
Yilong Li

📖 🐛
Yuan Tang
Yuan Tang

💻 🎨 📖 🤔
Yuchen Cheng
Yuchen Cheng

🐛 🚇 🚧 🔧
Yuedong Wu
Yuedong Wu

💻
Yunchuan Zheng
Yunchuan Zheng

💻
Zheming Li
Zheming Li

💻
Zhenguo.Li
Zhenguo.Li

💻 📖
Zhenzhen Zhao
Zhenzhen Zhao

🚇 📓 💻
Zhizhen He
Zhizhen He

💻 📖
jimoosciuc
jimoosciuc

📓
kenwoodjw
kenwoodjw

💻
nullday
nullday

🤔 💻
wangxiaolei
wangxiaolei

💻
wyq
wyq

🐛 🎨 💻
xiangtianyu
xiangtianyu

📖
xieydd
xieydd

💻
xing0821
xing0821

🤔 📓 💻
zhyon404
zhyon404

💻
杨成锴
杨成锴

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Star History

Star History Chart

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.2.5a3.tar.gz (261.4 kB view details)

Uploaded Source

Built Distributions

envd-0.2.5a3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5a3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5a3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5a3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5a3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5a3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5a3-cp311-cp311-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

envd-0.2.5a3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5a3-cp311-cp311-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

envd-0.2.5a3-cp310-cp310-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.2.5a3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5a3-cp310-cp310-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.2.5a3-cp39-cp39-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.2.5a3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5a3-cp39-cp39-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.2.5a3-cp38-cp38-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.2.5a3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5a3-cp38-cp38-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.2.5a3-cp37-cp37m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.2.5a3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5a3-cp37-cp37m-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.2.5a3-cp36-cp36m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.2.5a3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5a3-cp36-cp36m-macosx_10_9_x86_64.whl (9.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.2.5a3.tar.gz.

File metadata

  • Download URL: envd-0.2.5a3.tar.gz
  • Upload date:
  • Size: 261.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for envd-0.2.5a3.tar.gz
Algorithm Hash digest
SHA256 797cb88cc546302301b228c6044f90fc4f38a7d081163b7c5551e973c7093d71
MD5 71e59c830a97bf87387492bc5ad5e9b6
BLAKE2b-256 7a3fada747b6a82e615845d0ccba011caa1d7329191ec5e96bd24bef513eb521

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7bbdda88b71584b8da344f81ad8276eecbd2917bfc6d51225ac4c7ade954812
MD5 2c8c93a1a28baacfa30495813ce8324a
BLAKE2b-256 92baddd13466e4e6c892f4b72a4a78c9424815c50f99be5416d843d1ac845449

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5a3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5a3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b72021c1e7094689aed640b4608c7081dea6800538a1bea59cae8d16a52aaa4
MD5 88cf7c0c5c2aae8d77bd84c89fccf25b
BLAKE2b-256 774cd951299690cfa10c6ae5cefcda47dddd0d4d48f971108872b820e92f92ff

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f886d3a6324a88a9fcede362664706a3a34388ca71b115c2fe73d8f86ede1ec
MD5 62aaaf8e49ef42b157d29c364a0e90af
BLAKE2b-256 da5ad602f1d54fc697b3e0df6ae91198b770e03429861e64002e0791ad6cb728

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5a3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5a3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7226dc9b572100a6c0cbe93a0bf5573490078a9c193e8a87f4b7a2aba210d4b2
MD5 ae535d75e91929151a631022901f0696
BLAKE2b-256 60d8d37f0483f4a6684d259fa35fb5bfa512521c2296564bb3192bded8d4f8eb

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4afd45ec913327ba225765eac12b56611c23024c430f9ef52416ddc10dda6f43
MD5 6d604061ea94ffc3b8abea780cf83939
BLAKE2b-256 ef3b16a01c94c9c81ce1f0a65380f93ba407cb10e6a0b780296f6032b13b54d6

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5a3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5a3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3435dc1026cc3e78046a418bef501a6fce06085ea7fa201684829d97b0787737
MD5 623186c0282d182a90b12651719e1220
BLAKE2b-256 fdb9373b2e95b52efdbb53342d47cf9370c4a8f8e72c4c6b4d0f39414945bd74

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 105a2b4d1c1671c671fc0be4b929a4565d0216a10ac01b369c1917b67e7febdc
MD5 102f73f864df23c9f1643ab681871686
BLAKE2b-256 cf60c51763ba0e52f86ad05530d97772a3ddfe9223808f69a8f61d8347c57e12

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6343c361654fdfa3398c16b6f75b0780c06c365ff44c49885b8c61b1afae0f90
MD5 bd5f01afff405ef3990495ca86b26ddf
BLAKE2b-256 8d3c25d9e3ac6a4fa35aff00c4802aa2e0eba1ad7949b03d8bb545f23a7e4840

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5a3-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5a3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bcbd4d6e2a03693a4579fb56f48df507213d0fb796f9bb582f078eb4c19dd272
MD5 d97e938dad4f8bf5f528dec41d3ca907
BLAKE2b-256 b3e7c4dfc6e6e31886b573cee35ae8717822aa17e5d638f04b643ec8c20df0dd

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f9e0e261e7c2aee03e499cf5f188ca118eca27e4dd0f7267928eee1409c1c122
MD5 54b30650aac685b6e1eee8b787afd3eb
BLAKE2b-256 c56297b9644024fea14ccd9ec9e67d1d4278e69453112e31ad88f6b1ffd8752b

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f9ac2f3bbb354f712c7348722e96eaf72caf8495b364cfcb8bb945d14aff03e
MD5 8546ed476c5aaa7af372fe02cfd62fca
BLAKE2b-256 d2c39d8760530ddf27e4a8942647f8c36f3498b31d7f96227a41e8c75122020f

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5a3-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5a3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 109a2b7960a51906964df90fd707b2145021cb6dc1cd4475dd41286398fb8cee
MD5 a82dcdfea36cabac29c3095bc18d34ba
BLAKE2b-256 b711900eed8467cf44dbfe07b3fab9f1fd2aec35714e2346d0993c9b509f3e0a

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 830ea9a857ccbc6b33e4192f4b7d10ba8495c8cc4b9c428b51a9941f5351e05b
MD5 8ab3e0ad196aeb4dc227bf1fbbc499c6
BLAKE2b-256 fad798e4f46825b99328ea19e6cdbde354440ddddeaffcbc7bffb613d29581a7

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2cf2459631bb996be00de17f542358838c8e3d14918a4b2b3d4180995372eb9
MD5 9cc78e81a4432fc4348d5d0f6a0002be
BLAKE2b-256 0b65dd462687bab14232fb003e9657325440d4992a02cb45e364e9d3169f74c8

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5a3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5a3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d705818d4560ada3334756f4bdce01272d6287872c058e5438f0770acea84d8
MD5 9b02935aaca484e3c03b63af3fbabd89
BLAKE2b-256 cbe28ff2718e1a6d7c8471dd65ca3500b1e17109d47a2a4f8488c89ea0afc124

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f2d6508a0a08a27019692d44d0971548032a3f0ae68d3c44b14fda0c15a0b32d
MD5 ea9f7ca7d11488b4e1a2be7193846dca
BLAKE2b-256 78995eaf0d5e488914c126c2ae2d5ed7dc475cb4a14869c756d282de0576f812

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc5d8b81409c9afd4819e2343e125a9c13b13a2c156962911a38edaa45788fb9
MD5 60d8b12d5052287b862849d0d97c7917
BLAKE2b-256 d47f6b267cb2b24f206c9e01a034537213f0127aa835dcffdd665888fbfa256e

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5a3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5a3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b9a2a95dd0001bcf021d6ebb7e50e587c4a3545cf7c1913f2d2877a0194d362
MD5 ddbc23564aa11437814e211fac9815fb
BLAKE2b-256 8cdc459db99ef74e77aed00a582fd47f56ef280eaf0292ab4f3a83e35eb29bd4

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c8b4eb33dc2d37305d85c462f01e1feade9d6edf4b2d359d20e6d676deba91eb
MD5 9554373c9c7f5c1a2aff164c563b1fe0
BLAKE2b-256 d258588fc2f4024d03ec54f6fd6aac7933edcf0f138fde18b11358cb5bf8e4a8

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0cf78cff2607c40762d4e806e4366d893bf40143db7d942034e58a758e444f44
MD5 17d56ef5bc9673708ee45e603d4747e0
BLAKE2b-256 025329c7bd999c3672bf858949db67ec754f168252e2d9f5cf8dd10b2679e540

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5a3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5a3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf7944f38538865165e6ce22c93ac3baa891ef519dc12513946b71ca47ae8d5e
MD5 8e474e0df26d5a8148707ea3135ec2e0
BLAKE2b-256 c7f711e971b188762732d5f2d7ad36cadc45b27638d9f44b8dd048671ca61962

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9a3a9def288a1ecfa59a201dba1ca3f8db750f9049cf90fdf79ca8be12e7629d
MD5 2bc8c706de196b66dd6a013aecee2e0a
BLAKE2b-256 311d330b4456d42669c01fd69d7d30121f9ba0c584c8c870b4aebfdbea0076ea

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5a3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 852ee8be44290e0a424c34a19368eea93fbb22240e12319ba5c0c4f34c7b5118
MD5 4aa8718a0554fe74b1dda6e0b7b4a078
BLAKE2b-256 68f1f082bfeeced0a075bf7f65fb46d1367bcf9a22d2863561578d7122529ba1

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5a3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5a3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5a3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02187ec25fb0563814da93ddbf6500031b9bbff7a665af8827248d38cbd2441c
MD5 54eb2e0c152c92b78745cefcdfba0395
BLAKE2b-256 8350b5b78fb7bb58e0fde89e259fbdc7b053f3318dfb3ad89d9285dbb7812749

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page