Skip to main content

A development environment management tool for data scientists.

Project description

envd cat wink envd cat wink

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

explain

explain

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❤️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(host_port=8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(
    envd_port=6006,
    envd_dir="/home/envd/logs",
    host_port=0,
    host_dir="/tmp",
):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                envd_dir,
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

🐍 One configuration to rule them all

Development environments are full of Dockerfiles, bash scripts, Kubernetes YAML manifests, and many other clunky files that are always breaking. You just need one configuration file build.envd[^1], it works both for local Docker and Kubernetes clusters in the cloud.

envd

[^1]: The build language is starlark, which is a dialect of Python.

✍️ Don't sacrifice your developer experience

SSH is configured for the created environment. You can use vscode-remote, jupyter, pycharm or other IDEs that you love. Besides this, declare the IDE extensions you want, let envd take care of them.

def build():
    install.vscode_extensions([
        "ms-python.python",
    ])

☁️ No polluted environment

Are you working on multiple projects, all of which need different versions of CUDA? envd helps you create isolated and clean environments.

Who should use envd?

We're focused on helping data scientists and teams that develop AI/ML models. And they may suffer from:

  • building the development environments with Python/R/Julia, CUDA, Docker, SSH, and so on. Do you have a complicated Dockerfile or build script that sets up all your dev environments, but is always breaking?
  • Updating the environment. Do you always need to ask infrastructure engineers how to add a new Python/R/Julia package in the Dockerfile?
  • Managing environments and machines. Do you always forget which machines are used for the specific project, because you handle multiple projects concurrently?

Talk with us

💬 Interested in talking with us about your experience building or managing AI/ML applications?

Set up a time to chat!

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip (only support Python3). After the installation, please run envd bootstrap to bootstrap.

pip3 install --pre --upgrade envd
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+]  parse build.envd and download/cache dependencies 2.8s  (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25)  (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd
⬢ [envd] # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):

 Friends A.
Friends A.

📖 🎨
Aaron Sun
Aaron Sun

📓 💻
Aka.Fido
Aka.Fido

📦 📖 💻
Alex Xi
Alex Xi

💻
Bingyi Sun
Bingyi Sun

💻
Ce Gao
Ce Gao

💻 📖 🎨 📆
Guangyang Li
Guangyang Li

💻
Gui-Yue
Gui-Yue

💻
Haiker Sun
Haiker Sun

💻
Ikko Ashimine
Ikko Ashimine

💻
Isaac
Isaac

💻
JasonZhu
JasonZhu

💻
Jian Zeng
Jian Zeng

🎨 🤔 🔬
Jinjing Zhou
Jinjing Zhou

🐛 💻 🎨 📖
Jun
Jun

📦 💻
Keming
Keming

💻 📖 🤔 🚇
Kevin Su
Kevin Su

💻
Ling Jin
Ling Jin

🐛 🚇
Manjusaka
Manjusaka

💻
Nino
Nino

🎨 💻
Pengyu Wang
Pengyu Wang

📖
Sepush
Sepush

📖
Siyuan Wang
Siyuan Wang

💻 🚇 🚧
Suyan
Suyan

📖
To My
To My

📖
Tumushimire Yves
Tumushimire Yves

💻
Wei Zhang
Wei Zhang

💻
Weizhen Wang
Weizhen Wang

💻
XRW
XRW

💻
Xu Jin
Xu Jin

💻
Xuanwo
Xuanwo

💬 🎨 🤔 👀
Yijiang Liu
Yijiang Liu

💻
Yilong Li
Yilong Li

📖 🐛 💻
Yuan Tang
Yuan Tang

💻 🎨 📖 🤔
Yuchen Cheng
Yuchen Cheng

🐛 🚇 🚧 🔧
Yuedong Wu
Yuedong Wu

💻
Yunchuan Zheng
Yunchuan Zheng

💻
Zheming Li
Zheming Li

💻
Zhenguo.Li
Zhenguo.Li

💻 📖
Zhenzhen Zhao
Zhenzhen Zhao

🚇 📓 💻
Zhizhen He
Zhizhen He

💻 📖
cutecutecat
cutecutecat

💻
dqhl76
dqhl76

📖 💻
jimoosciuc
jimoosciuc

📓
kenwoodjw
kenwoodjw

💻
nullday
nullday

🤔 💻
wangxiaolei
wangxiaolei

💻
wyq
wyq

🐛 🎨 💻
xiangtianyu
xiangtianyu

📖
xieydd
xieydd

💻
xing0821
xing0821

🤔 📓 💻
zhyon404
zhyon404

💻
杨成锴
杨成锴

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Star History

Star History Chart

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.2.5rc4.tar.gz (9.1 MB view details)

Uploaded Source

Built Distributions

envd-0.2.5rc4-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc4-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc4-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc4-cp311-cp311-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

envd-0.2.5rc4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc4-cp311-cp311-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

envd-0.2.5rc4-cp311-cp311-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

envd-0.2.5rc4-cp310-cp310-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.2.5rc4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc4-cp310-cp310-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

envd-0.2.5rc4-cp310-cp310-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.2.5rc4-cp39-cp39-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.2.5rc4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc4-cp39-cp39-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

envd-0.2.5rc4-cp39-cp39-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.2.5rc4-cp38-cp38-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.2.5rc4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc4-cp38-cp38-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

envd-0.2.5rc4-cp38-cp38-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.2.5rc4-cp37-cp37m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.2.5rc4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc4-cp37-cp37m-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.2.5rc4-cp36-cp36m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.2.5rc4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc4-cp36-cp36m-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.2.5rc4.tar.gz.

File metadata

  • Download URL: envd-0.2.5rc4.tar.gz
  • Upload date:
  • Size: 9.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for envd-0.2.5rc4.tar.gz
Algorithm Hash digest
SHA256 4c405d2e46603487cd18024ed67e503fc24333514e56813ff684b4ddb94fd30b
MD5 9c2db463d6ecd82473fe8410a0444c21
BLAKE2b-256 460d295ce6dfdd654c009c3e735b713d1939827bfca0bb5909129aa0b161dc52

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8472d61d02f5bcdb0744673e6542091f709a56f7e65689ad2486024a7b2f46fc
MD5 157967bba4bfdc25793ff387f97a46e6
BLAKE2b-256 f02e2fbf3b853651ca12b64b92a374559762e08070fc6aa7b5af7bece611caa0

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 853be35d94742f8e20d664a93d39488bf6e9869575b5b6cfd6832f64306db8d4
MD5 f81063c8ef8cf8269826fa45f6eaa8fb
BLAKE2b-256 10a551cf54e803ce1b0d0160d0a9f022bf37f908a08fce8ed03dcbe95064f8d7

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e5c12aa173a50a193ec6d96823d6e19b9c195de72d0b8a0e86acc026227253a
MD5 c3b9f499e6fe7c89b22ce52a5a60283b
BLAKE2b-256 4e04b479225b874e9bf36b35a1d24f1409ca7807ec493ddf081d1f333b7c522f

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d63253e46a124ddb2c39b36486a45ec2f8b1a131fd6553b1805287ba3b2694f
MD5 85d67c561913e4435fd219a7aa290347
BLAKE2b-256 51991fbfeb6f74b68337f0387b531351f331df8d9937e81d2132e5eced365c23

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 620b6b538ebb7401e3ec31b77cf193ab3666bccaf24b2fb6e9e17d7f8fa30e00
MD5 8572d52bdb93bcf5e12f0bb9000bcc45
BLAKE2b-256 1d747691b49004ac3363d37124f4fc542e14f347deb9d801381ba3bea4fa3907

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f97439a20fd58669c1559e2724c1a064b9049046ec6a7b278a94f4267d6bf070
MD5 a1372396bd23fca1883d4bba38ede918
BLAKE2b-256 551089387fcc4f66f2649bcca2fd8d54b2abf9678cfacc409840686d2d9a8f58

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3283c1a3e09082f697d3e08576f6c09fa69b9efce9898be5f39a846efba078bf
MD5 b49ded38d860688a7ac57313bb93e1bf
BLAKE2b-256 9b1d3aff16a2cccb55b6d4f88a5ad117f3cd4f8f6696807174b973711a871ee5

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 871686fa2b20a3904a3d7465e2a5f7c650ea79d800ab5c0c9675f53232ee789f
MD5 f65a6d13e205ee39e5be43b9eec38147
BLAKE2b-256 08f17fcf37ccc210a37dbf849f36b9529be97db85cea5cce0685fa1bd92609f7

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5523af9b9f2d4f3a922fc902ba6f3c4145e19b46ed38aa65684cea558cfb271
MD5 4ab690aa206c1ea38e651b4f05f03cb1
BLAKE2b-256 4869e16904ef08cf8e42e3f9e12244a421cfba24ac8e271cdbb5ca2638d947c3

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2fc4d6b9cd72cdcb894fce247b4150ed601abc2d95a190800f34041e559c4fe2
MD5 9eeb4518d2d13ee78c15d8c2e0d2d6cb
BLAKE2b-256 70bdfb86d807848767dbbbe8ab953a818fa0e0758ad283b7c645ccf6e7726734

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 41837553872e75ec3e47f46d22661588556f460f4cd1c18da45f41fcc3889fc3
MD5 d16752e7dbac883f2ad3cc67268b5ed6
BLAKE2b-256 4dd25d7c61d5a5ad4ac4174fcf6a0dec4514c35bc430b861eaef954f9fd4b4cb

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ba9269ca5fbb769642933020532b6af8a37c814c05c557adb1868a196003706
MD5 9e33c25314e788d1e8af50a2f056c023
BLAKE2b-256 ea8c04c54ccf531bf1ccc1b3ca479a2769d6f9c6c1088f5d91f385d0f72301e9

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d9fb93c74e458684fba7de9b45d20602393dd0a2cac39aff06b70d25de3f2ea
MD5 fb6d7915e9328b5eb9783c77f1b58b32
BLAKE2b-256 d6921530c92ff1da8b614b0fa3c0ed966cf91e606d9e069ce9e09be91b3d4ae1

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2683563fae051eaede4d3cda568bb40891ba443618f42a7d5307e40e7da73fdb
MD5 0cc7a2bf16fa2a322def40a278bde020
BLAKE2b-256 3d940aa2eeac93b48d5694e4969603dbaade3f3000f13c737afb67ed0a3ec21d

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 aaa140caf94fc638d4a2437c900183030b123f09b3fb0451b8c454836800dc8d
MD5 083f93d887a5d03a43928d061d55c78c
BLAKE2b-256 0bd506c723b98814bd1c4f42b34105585e501588ba39960df597a60c95cbf285

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60c978c801e834f99a5053b4f46cefd985c1c87825d4ab3b3bb4faf7f688a8ad
MD5 f63c72443f73ae03e4d3f749f86e8e81
BLAKE2b-256 2ad02b8b48a3a23c09910bf47788c61b22eb333a63b3fc4d59f2cf47d1f41de0

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c59c6281f940dcc32a4a2a4c718ee21fff4f2ae24913bc972b8ae1851d2ed3ed
MD5 bbb1f4c92ab0d99582c817e4d8b19069
BLAKE2b-256 570fca51fe39990541773230b3b65deb90a2e8403585b5c58ce19ea2a6f5b9dd

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 381846118e33806934d3d72599d2c46f033b1011e450c2b4cfe70c58008707d8
MD5 40650cc4373b2f493ba55488f8ad1004
BLAKE2b-256 823c0b3a724357826a2ab7dfa21e0d634866e717e53f25c99e014a51d1c4e736

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 93f6ed6489901050835d09b914f3aaa37dc3145647b96f6c51b245674e1144b3
MD5 138ecd85920cd351e82ab3c6d84eac96
BLAKE2b-256 302d65a37d0e0af811680f779c6efa2fdc2192de4af2bb83a6af67cf35737f2b

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c56dfe36297113f302184b700ec0a3c23b25cd5bbfaf80f79b3893b9a5fc0df1
MD5 fbc5af411110300c9bec342710480d5f
BLAKE2b-256 4f5bb4beefdf8c7733175d03a7a0d61eee17f130ad0842c8bcdab59233d334b4

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 67d8a96aa9e9da52ad2485bcaafec2de2d52f428b858f09d406fa81b2023511a
MD5 09820a33278f55eb648062877d0b058c
BLAKE2b-256 c1de7c3d2835274efef2d0aeeb29b7ba7a6779629dbfd920300c6c5b733dc997

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23d00970f786bef051f0d95fa51beb6b2c0f5d38f62621075cbea8149292a03e
MD5 48439d54220d38f9fbb3e9b1b30f98fd
BLAKE2b-256 9623c025a84019be3d95db70c4aad0f214eb5f33174b580ed544a982145110b2

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fbd2ca9d5cbe5d8817f2d6a4868ecc516481d2978b93c31726285b512846984c
MD5 de86f807fa3a0c01d88a485721c904ac
BLAKE2b-256 34ccd191c196f7587cd843155b04523c2f3e9f9f86ed9a9994624f908f755d88

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c2c19f013f5cc69fa6586d56999b8040772a53275e8bd85a9d0b29ccfb9f8d9
MD5 38f3204bc61d9db9b27198ecd635c76e
BLAKE2b-256 eb94a4f130d1b1c0cfbe750005120097f1237c6dcf2870339310ace6fc2b19c2

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8d2cbac91969f98e062e24973b532217ef2464237632a1556a0d19108ed9582
MD5 0c2c1fd996e890f189b717e7762f58cf
BLAKE2b-256 ac6fede22daa49ba0f870ae70baac517a4b6c416636d279fca2ad0a0c4a9b25c

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b1a970295111ba8d831af36383b9cf8430c54edd719b56d089d8d824a2da2a73
MD5 dc811f6581ca10acbbbd686849d71176
BLAKE2b-256 b255614ec3bcad84eed326913408b0850ddde00b695a554169fc2d0ec435dce3

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc4-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02a0ccbe0c45a61a6e523ed175a8db28e5af550186306dde96995d51bd3f352e
MD5 735f4b33e2d2187f79468bbb8825f507
BLAKE2b-256 486ceca1f6c57f39e22f3e4fdbaa4b4c0f0443adff848ec60e65a2847f6254f8

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc4-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 33fe9edce22cf924aa250a16602a69737972295048c6c3369e466e264656f5cc
MD5 4d3e0489331c82fedc6361714eb48f1f
BLAKE2b-256 bdcc24775cf943362ab11edf35da3b62a4e28814576a326af8332872f77c41c1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page