Skip to main content

A development environment management tool for data scientists.

Project description

envd cat wink envd cat wink

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

explain

explain

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❤️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(host_port=8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(
    envd_port=6006,
    envd_dir="/home/envd/logs",
    host_port=0,
    host_dir="/tmp",
):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                envd_dir,
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

🐍 One configuration to rule them all

Development environments are full of Dockerfiles, bash scripts, Kubernetes YAML manifests, and many other clunky files that are always breaking. You just need one configuration file build.envd[^1], it works both for local Docker and Kubernetes clusters in the cloud.

envd

[^1]: The build language is starlark, which is a dialect of Python.

✍️ Don't sacrifice your developer experience

SSH is configured for the created environment. You can use vscode-remote, jupyter, pycharm or other IDEs that you love. Besides this, declare the IDE extensions you want, let envd take care of them.

def build():
    install.vscode_extensions([
        "ms-python.python",
    ])

☁️ No polluted environment

Are you working on multiple projects, all of which need different versions of CUDA? envd helps you create isolated and clean environments.

Who should use envd?

We're focused on helping data scientists and teams that develop AI/ML models. And they may suffer from:

  • building the development environments with Python/R/Julia, CUDA, Docker, SSH, and so on. Do you have a complicated Dockerfile or build script that sets up all your dev environments, but is always breaking?
  • Updating the environment. Do you always need to ask infrastructure engineers how to add a new Python/R/Julia package in the Dockerfile?
  • Managing environments and machines. Do you always forget which machines are used for the specific project, because you handle multiple projects concurrently?

Talk with us

💬 Interested in talking with us about your experience building or managing AI/ML applications?

Set up a time to chat!

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip (only support Python3). After the installation, please run envd bootstrap to bootstrap.

pip3 install --pre --upgrade envd
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+]  parse build.envd and download/cache dependencies 2.8s  (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25)  (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd
⬢ [envd] # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):

 Friends A.
Friends A.

📖 🎨
Aaron Sun
Aaron Sun

📓 💻
Aka.Fido
Aka.Fido

📦 📖 💻
Alex Xi
Alex Xi

💻
Bingyi Sun
Bingyi Sun

💻
Ce Gao
Ce Gao

💻 📖 🎨 📆
Frost Ming
Frost Ming

💻
Guangyang Li
Guangyang Li

💻
Gui-Yue
Gui-Yue

💻
Haiker Sun
Haiker Sun

💻
Ikko Ashimine
Ikko Ashimine

💻
Isaac
Isaac

💻
JasonZhu
JasonZhu

💻
Jian Zeng
Jian Zeng

🎨 🤔 🔬
Jinjing Zhou
Jinjing Zhou

🐛 💻 🎨 📖
Jun
Jun

📦 💻
Keming
Keming

💻 📖 🤔 🚇
Kevin Su
Kevin Su

💻
Ling Jin
Ling Jin

🐛 🚇
Manjusaka
Manjusaka

💻
Nino
Nino

🎨 💻
Pengyu Wang
Pengyu Wang

📖
Sepush
Sepush

📖
Siyuan Wang
Siyuan Wang

💻 🚇 🚧
Suyan
Suyan

📖
To My
To My

📖
Tumushimire Yves
Tumushimire Yves

💻
Wei Zhang
Wei Zhang

💻
Weizhen Wang
Weizhen Wang

💻
XRW
XRW

💻
Xu Jin
Xu Jin

💻
Xuanwo
Xuanwo

💬 🎨 🤔 👀
Yijiang Liu
Yijiang Liu

💻
Yilong Li
Yilong Li

📖 🐛 💻
Yuan Tang
Yuan Tang

💻 🎨 📖 🤔
Yuchen Cheng
Yuchen Cheng

🐛 🚇 🚧 🔧
Yuedong Wu
Yuedong Wu

💻
Yunchuan Zheng
Yunchuan Zheng

💻
Zheming Li
Zheming Li

💻
Zhenguo.Li
Zhenguo.Li

💻 📖
Zhenzhen Zhao
Zhenzhen Zhao

🚇 📓 💻
Zhizhen He
Zhizhen He

💻 📖
cutecutecat
cutecutecat

💻
dqhl76
dqhl76

📖 💻
jimoosciuc
jimoosciuc

📓
kenwoodjw
kenwoodjw

💻
nullday
nullday

🤔 💻
tison
tison

💻
wangxiaolei
wangxiaolei

💻
wyq
wyq

🐛 🎨 💻
xiangtianyu
xiangtianyu

📖
xieydd
xieydd

💻
xing0821
xing0821

🤔 📓 💻
zhyon404
zhyon404

💻
杨成锴
杨成锴

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Star History

Star History Chart

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.2.5rc7.tar.gz (9.1 MB view details)

Uploaded Source

Built Distributions

envd-0.2.5rc7-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc7-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc7-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc7-cp311-cp311-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

envd-0.2.5rc7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc7-cp311-cp311-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

envd-0.2.5rc7-cp311-cp311-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

envd-0.2.5rc7-cp310-cp310-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.2.5rc7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc7-cp310-cp310-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

envd-0.2.5rc7-cp310-cp310-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.2.5rc7-cp39-cp39-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.2.5rc7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc7-cp39-cp39-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

envd-0.2.5rc7-cp39-cp39-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.2.5rc7-cp38-cp38-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.2.5rc7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc7-cp38-cp38-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

envd-0.2.5rc7-cp38-cp38-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.2.5rc7-cp37-cp37m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.2.5rc7-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc7-cp37-cp37m-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.2.5rc7-cp36-cp36m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.2.5rc7-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc7-cp36-cp36m-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.2.5rc7.tar.gz.

File metadata

  • Download URL: envd-0.2.5rc7.tar.gz
  • Upload date:
  • Size: 9.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for envd-0.2.5rc7.tar.gz
Algorithm Hash digest
SHA256 a62b77cc168cd42a61887354deb64b3bdc92482a5fc9d6a9e74ba0b215d71ce6
MD5 209d874ed060b14977bae4a03a766a42
BLAKE2b-256 1f99141f19e04161f5453b77bb449e438685b09a20aca727d47a7dce3ea24092

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 605e507e90d5dc0873c02bc21b415915b20daa118717e0133fb9bb36fc813bf5
MD5 78eeff08a00ef9ed723b33961bac79ed
BLAKE2b-256 2e21817114373a90cb4200e4ec8ccc120740c170876c668951ad6b05edc3c986

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 43f7fd47896922ffe8d289540cb1a6f58c03fe3cf3ea238a39ed0a9adec61209
MD5 8ae300cf1d7d47a7f3ff85a4f6d2e0d7
BLAKE2b-256 f25dfc90161933f3fba232b2447a60024b84f516e55d6e1fd754e96b7e4ca14a

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d8b4607a5f07f498f47ab7a03dc8ea1f855e3aea9025ad306256f13ee68b328
MD5 c7f4f850510412992531c33818c4cbf9
BLAKE2b-256 652fdeb5ab399f915ff79145fccf8f3a68f6aac2042c14bfb53797c7f535a2df

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8cdb876927dc02b9962a3689d88245cb6edb31c1473a919afc116bfc17512c17
MD5 1ff25e3caa47ce075f343ec6dc18e7f0
BLAKE2b-256 5f8586ebb66f8df8f6be39f74d5b0837f784d431a96aa23d5791263e1f26e05c

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4320f0f878613507514f53fb42be4a5a4abc5f174d45cd1ead453a1a8c621e8f
MD5 2c11e8e06b3647a8c493cadfae3b2c6f
BLAKE2b-256 2a8b412dd84771b06af6ff171850769d7175fef919eaaf676501311e2fdc942d

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e0fb90fec30c79fc563387d3bb0c4f354387c4e56eb6e2987353e1ad9f0923b
MD5 69cf829a304ca22d47f4dd33831ffb92
BLAKE2b-256 869f53557583dca75858cf69b3fb83e04f3b5673f631ab838d9bd3014b007545

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 942a02d71b17a3e353850334a5654b28fb6f7cc1e2237f5de01f6c4f5fcba08e
MD5 79a5941af04d667ae8e73d6cd73cd892
BLAKE2b-256 9a5f39407003711033df544995c18de9b557350abd7ab1a8426bdea95903edbd

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 288573967211928f177c5af1494b7a220000d1b178f055d03f0a6716c2251efc
MD5 a2f85d6bf185da95330b91c976df34ff
BLAKE2b-256 b06ea39435568773a6d89405bc9e157a6e0ecd193a6c2fbff945c73732164180

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e3c844d16a98ffc5f653605cd5d308b72de7906c359e6945ef251db732e68e6
MD5 775a433c9de14ad0c706ae80ec2c8a7c
BLAKE2b-256 0e62d9e77787708e937728e1e3a2b20442e555556c4fe6e3fc5c7f0cd37704ee

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bdd0f8115cface56a973dd44dcc71b5b94810d4fd33b09f57cd209da835500b9
MD5 4134fb995ac9932af27010d49bbce699
BLAKE2b-256 be915f67c9970b88b88b538abad20e75e46a11e80f408a6395d3cf99602fcd93

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4a357f0a60c0461ee39ad43674af6ccd7f5b5868d97f5949b5e5741944e34535
MD5 e571e0363b795f208ec0d62bf3026907
BLAKE2b-256 6340edfa5bf4e9bdca2688cd87cadca60443263f2e01d36f5692d706c15f307a

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 661a3e8fe4cf949730d58d5e535e37f8d86978793d6566fa6f10e7dc79d6e5e2
MD5 6b7ff17213f4209e01d91744b57e318d
BLAKE2b-256 5aeb0451d2630c75755d05aac1ab3b21c68c5450981909f0b2e27a5d52fccc01

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a6244a8de9a1334285534cf8ff92cabb4436d7ac83e25b7fe663d1b590274819
MD5 5aa58ad32b924f1f63bbfba16aac82b0
BLAKE2b-256 1645e6948d13079fca5d53138ec088c8780eb79f4a3bb84a02c13d09b995a409

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 200862765895df47c31aaa72f318754e890ff83788dd7ce8a18f88b10c9a097d
MD5 8a2fc3b244a628bd7d9f89fd3e3f7412
BLAKE2b-256 4a21ce68d8ac963f4d38c8f3764a5cd4dda37464bd3fb7c53736765278441575

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3e87a2dfc6072558c937c16ca24c2dec9cdd123752572e67748d720a5f79b135
MD5 1abba9b942b5175d7bba8387351c21f0
BLAKE2b-256 14d2c03a6517b04ed414107cf231b0ea89f2274e3b45a8051883b1c5e76ac578

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ed536541a2f3b7e62c74ca66471b265e14803fef65939a64074267d04e403d6
MD5 551215419f2733bc7c4d415e44a58ab9
BLAKE2b-256 2f104d0e41085cb6586b7f8385f872147575dbe45850ea0d0890c236f357fd49

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73792a81d5ebb2c32c9ad88169ef322d48a2b40d564330fb77147befceaaa253
MD5 6bdb04d34cffa620f9a692ed562bae48
BLAKE2b-256 51d38eecfffb95f24976bf1ee4636ef17542bcdb44ef2dd3a280c1ef10172d2c

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a36a2d7675dd7c0b1c242a1fdbe68ec7f6dde553e0d89fb7acdf744850ba917
MD5 891cd7d2ff95a56bdb6e2207ed663320
BLAKE2b-256 df46eef4164a37267116f9c79ba09d699b74269052e5ec6858af2bfd7c8bd23a

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 df7c100a30ca797a865b94043359e34d0bad7cc16fd7b3cb8e924ccc2dbfe201
MD5 f2b02e7ed09de8228ec939cafd1d8381
BLAKE2b-256 6bf436441409f120de49c07faa2caefd71d78e1a60bbb0d7207d94afab345457

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4e41fdfb187656f555b1e599f5d5ec01ff56e5e363722afe00b8c2969b73d68
MD5 ab94ce5b155f13264169c28cd5e8ebaf
BLAKE2b-256 635b6432e59bb0fd7045015872dd1bd0efbedb8cfe14868dd6ff59ef0680003a

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f69662100695ac50f20f23db24c67a561b8105daf5e5912cc5596fcd3c4722da
MD5 a5e9cc5a6da1a2d2b13abe590208e2ee
BLAKE2b-256 21bd6321a8f817439848c13af87e2f5de4caa0c82534d82e7a29b3b365313293

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 948b22277e2bf9e746a87250356d5ed8f0c7635ed14ca6cdf607c5c15f089922
MD5 730cb724aa32c0a6f7a1fa5b73fd9511
BLAKE2b-256 d982d2c2d52aedd984c85a7f37a8c0195498f81a7a6e55c4fec6cd0de5522b9f

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c21a2249e419a11ae1cf1a552ec942a975ba27ec4e1ead7896439486c9ae9a2f
MD5 f49a81e0c94493582cf1e97d51782a1b
BLAKE2b-256 69ac290e2ae81eb6d5ad7329e3e23ec8b4d52ea47da9ac27c5a713da0544582e

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b512d9f31f99bc1cafb745c4ce50bc4c1a2b8c24ac37b97510448699bdc0372
MD5 d5ccdc89447240a5c2fa2e3da9b34a12
BLAKE2b-256 8f6557f055c04213573e762781c22e87f0042455f9e5cd8afbd41be380da94c5

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a4a041a92466e426b29f1a4fd0b5dfce251f04d4d7f953b40ec83ecc341133bd
MD5 0da42bd71c5247c00a3cbe74407a25e6
BLAKE2b-256 e5df9c03086d9bf0454989417c5a6b2d64ee2dbfae4cd1be38395e25154e9225

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 32f4dd09b8e4e3bc2e81fb0a76e401e43a8b4739d9fc3bbbac327c4d536e1acb
MD5 d9e4a292b992d33e9b887f4e5ad667f5
BLAKE2b-256 4a27bb3c441eba0496c1065f461befa02ccccd7f0f51e96b64ef5d9a3aa65921

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc7-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1deda211dd9d3a89d046de308d41d7e711b9d5037ea7330a7ad1819b8c4eed81
MD5 8c7232e4214c4c24202e11aaf8074e4c
BLAKE2b-256 af4c6a675f004cdfeab29908bafde41720ca15f8ed7f2fd576cdf03bbd2d3ddc

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.2.5rc7-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc7-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc7-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08c0be11093b09781ae7507d22424c05570c05ef23febdc55151a2f5dd3672e8
MD5 afdca10bc1e26194faee05d166619e88
BLAKE2b-256 0c904867f46d02b79166981a4b725284404331eae83d3776f48a227eaafaf279

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page