Skip to main content

A development environment management tool for data scientists.

Project description

envd cat wink envd cat wink

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

explain

explain

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❤️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(host_port=8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(
    envd_port=6006,
    envd_dir="/home/envd/logs",
    host_port=0,
    host_dir="/tmp",
):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                envd_dir,
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip, or you can download the binary release directly. After the installation, please run envd bootstrap to bootstrap.

pip3 install --upgrade envd

After the installation, please run envd bootstrap to bootstrap:

envd bootstrap

Read the documentation for more alternative installation methods.

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+]  parse build.envd and download/cache dependencies 2.8s  (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25)  (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd
⬢ [envd] # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):

 Friends A.
Friends A.

📖 🎨
Aaron Sun
Aaron Sun

📓 💻
Aka.Fido
Aka.Fido

📦 📖 💻
Alex Xi
Alex Xi

💻
Bingyi Sun
Bingyi Sun

💻
Ce Gao
Ce Gao

💻 📖 🎨 📆
Frost Ming
Frost Ming

💻 📖
Guangyang Li
Guangyang Li

💻
Gui-Yue
Gui-Yue

💻
Haiker Sun
Haiker Sun

💻
Ikko Ashimine
Ikko Ashimine

💻
Isaac
Isaac

💻
JasonZhu
JasonZhu

💻
Jian Zeng
Jian Zeng

🎨 🤔 🔬
Jinjing Zhou
Jinjing Zhou

🐛 💻 🎨 📖
Jun
Jun

📦 💻
Keming
Keming

💻 📖 🤔 🚇
Kevin Su
Kevin Su

💻
Ling Jin
Ling Jin

🐛 🚇
Manjusaka
Manjusaka

💻
Nino
Nino

🎨 💻
Pengyu Wang
Pengyu Wang

📖
Sepush
Sepush

📖
Siyuan Wang
Siyuan Wang

💻 🚇 🚧
Suyan
Suyan

📖
To My
To My

📖
Tumushimire Yves
Tumushimire Yves

💻
Wei Zhang
Wei Zhang

💻
Weizhen Wang
Weizhen Wang

💻
XRW
XRW

💻
Xu Jin
Xu Jin

💻
Xuanwo
Xuanwo

💬 🎨 🤔 👀
Yijiang Liu
Yijiang Liu

💻
Yilong Li
Yilong Li

📖 🐛 💻
Yuan Tang
Yuan Tang

💻 🎨 📖 🤔
Yuchen Cheng
Yuchen Cheng

🐛 🚇 🚧 🔧
Yuedong Wu
Yuedong Wu

💻
Yunchuan Zheng
Yunchuan Zheng

💻
Zheming Li
Zheming Li

💻
Zhenguo.Li
Zhenguo.Li

💻 📖
Zhenzhen Zhao
Zhenzhen Zhao

🚇 📓 💻
Zhizhen He
Zhizhen He

💻 📖
cutecutecat
cutecutecat

💻
dqhl76
dqhl76

📖 💻
jimoosciuc
jimoosciuc

📓
kenwoodjw
kenwoodjw

💻
nullday
nullday

🤔 💻
tison
tison

💻
wangxiaolei
wangxiaolei

💻
wyq
wyq

🐛 🎨 💻
x0oo0x
x0oo0x

💻
xiangtianyu
xiangtianyu

📖
xieydd
xieydd

💻
xing0821
xing0821

🤔 📓 💻
zhyon404
zhyon404

💻
杨成锴
杨成锴

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Star History

Star History Chart

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.3.0.tar.gz (9.4 MB view details)

Uploaded Source

Built Distributions

envd-0.3.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.3.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.3.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.3.0-cp311-cp311-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

envd-0.3.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.0-cp311-cp311-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

envd-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

envd-0.3.0-cp310-cp310-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.3.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.0-cp310-cp310-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

envd-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.3.0-cp39-cp39-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.3.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.0-cp39-cp39-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

envd-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.3.0-cp38-cp38-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.3.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.0-cp38-cp38-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

envd-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.3.0-cp36-cp36m-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.3.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.3.0.tar.gz.

File metadata

  • Download URL: envd-0.3.0.tar.gz
  • Upload date:
  • Size: 9.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for envd-0.3.0.tar.gz
Algorithm Hash digest
SHA256 319b106d93245bb5f6d01634df705947b09437e3e17c8ef127d16115f3f3f2ac
MD5 17d229bf5caaa86257ed1fca6514dd29
BLAKE2b-256 84025d5e6d7c424bcb0b8259f3a5a96be47060c659595f3621b5000afadadc07

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ce1135e4dedc277a97f4787452bf46e8b4c1e033d200447696a8f54863bebff
MD5 9bcf01a98c3c509ee1f2a2c1f59677e3
BLAKE2b-256 bd7d955e1faed5c9ff6d8e5508a1c899fee341928c8de36f48a17655f755fefd

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c96ccf0f48780f55161d54a977de39f783bef5a0d160e89a8ea347e455049dc8
MD5 a25090b976fc1559a9b8d9c4af1e05aa
BLAKE2b-256 17cc6328de9b7d166118202ecd68063d63790a1db58b4baef3cafde473a33b09

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bde724e63a6945f6e71e6b9a62626e3ac2c02fa5a5a1f200eb058e7c3eb7e23e
MD5 012eb8d7aeb46b68058f73c7de104173
BLAKE2b-256 d66a3c12dd4221b7fd2f358bcb14d3c770ba7714fee6cd895f61e837dc41eab7

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b90e584d7a0e853806a9f25a3c70b57f6d034d28d93bdcc2ff589955cdd812b
MD5 4da4649fbf8555cbac219a3c268ee67b
BLAKE2b-256 5de9c43d40e932854a81c003d06dc0af4131d6e85b3ea7615d8116ed68f71ff8

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a439a9d7dbf22440fb8a1f9013b118726d4fe65c86b1369e7f69a35b6d6d5283
MD5 4dc1a89304a4d18f8dda4ba4abdc7584
BLAKE2b-256 935bc36480c0e28db5a40b3b71c7348b82804d6b197175b7d1acad1d7c30fa6f

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 096378320f73aeda0956375a3d213dbe81f4afaa296b37bf5d6c1476702f7946
MD5 00706688274c0067e3cbe29548e8e0f0
BLAKE2b-256 c47644f43fe16023d79a15833a44b4900bd6c076e6fb0f122154549f56fa2d5d

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 88329a253c0254f46f850c7a97302069a3007ac59bf3cf2449a3aa7e73c77d22
MD5 45222d9f1a862242971b7fed5888dd0f
BLAKE2b-256 85f9b2815cf44759e31b4eeba36db85d4ee126fb48eb916f9ef6495778e3876d

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8467a742dad9d58856bb1538f78241ae638f750e562d68f69d3c6388abad46d6
MD5 944b13887d99781294ba737cdf8e683e
BLAKE2b-256 44cb2422174a0f2978627b19add450b715d7e7b506ab0dcd0b6f2294792792c7

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.3.0-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ec3bc2a9fb656077222a74fa454c33c20cbf42243ec99c2e2d608d7339073be
MD5 46717a280669524d50f839970e179a4e
BLAKE2b-256 1d75d03c37ccd73b85493441c87745768adc0f99b8d144b9f91955b35d120cfd

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e9a18ea2193064a7ed620c54c1bfb1b7bc544ff8480c37fa2b7f237c0447cb0
MD5 b7148af807f6d1a3aa2ee7bc641190dc
BLAKE2b-256 fdc288e19b2d71785ba651485bdf74669c2fb07922d48f6ecf54c27db8c13bef

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5e1f2c837fae8a4a0aabd1dad9f7cb2378556c7e1193dc71b888e06aae3bf84e
MD5 cc37bc027d8145f60631cb02fa20f5d6
BLAKE2b-256 e6b74f3b8a2b94925c753fd309d19264b60dfa68f1c16f1882fe3ade306795a4

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91ce125eb0ce0670ed4fa1fca98916b0db4b20604e9e13066d63cc1b3d9d7965
MD5 d32e6e5b03a46dbae90f6e835bb6ac65
BLAKE2b-256 4eab12cb89503e607e7d66cdc945d5d98b710a1cdace882b2e9ee8d41211e683

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.3.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b0c6ed77793c1e054e4e0f23c17b749962694f668ad1a3f13bc4ede70b4fd42
MD5 0ea0e63612d105fef27d097ac2a88986
BLAKE2b-256 cb07b149e666ec22fdc4d066c9cc154330481d9df0124c4a48542479b76402c9

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 421149d199daa763d57ea15c4eaa18b400cbb752c5460678e9fddee65ad97442
MD5 6f9068710f2391893918285e69e0646c
BLAKE2b-256 8ee81567603c13c8d498d4313b067329639e697b55818479aec1ee2272f2b0f4

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a0cd58a54b3620989d0caf14b52023300640e465876f155a26cf8f3b2530feaa
MD5 07b110aa1888725024d312ae2e2cb4ec
BLAKE2b-256 cd9c23b8e76990c09b6694d888d58eb734f2b2adb9b4ec7113036453cc7c7d8a

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ff8b193c7780861fb9b4f8f5b840ef845c7e09d563dfe5b4a92d524065e6876
MD5 2493d6f0f68dc1b71f1ccc39b1abfad4
BLAKE2b-256 88a40b1e597cc4cc1897c3741636e21db7fb189cc4706d80a0b8f93c63db4288

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.3.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 921f5c0785c07f135b025a1b24c3da319b7c6a01838268fa717119e18b5373d7
MD5 ff6cfc25449df6ec0ac9cbb57d69f5a5
BLAKE2b-256 1246b59d2e0c4ce9373647ce4727f3be54ad7b2b3f9c9c5366f20d5ea3dcffb5

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c535b5cd79564643f0c141897ffa5cdc2f24aee4848a6fecfe730fa1226ab179
MD5 7db84e1491b1e6045196f8bef3d421f7
BLAKE2b-256 b23691c5f55f510e80d2a92162f143e896db7d7f70e10ece1a510cfd3b35397e

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2c8196010a060e29b91b3ef90d60446d1380bfc4fde6341447d38bacf1907dee
MD5 e2d517c06c2a567f5361d286f7aee2ab
BLAKE2b-256 fb45152d689506a6c7cef8acf0bf2fb151e359f8539b2caa05402a6815d6355d

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9bd9259f031775c8cb689184f0d75b05d773b6c063de1be5e6f84cf548132b6f
MD5 af08dac18f154e7f273d49b80ceda760
BLAKE2b-256 86437506151bb0fd06563762976342e5366b6502e60ffb5835165d300817a88a

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.3.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4233fae29984c5a4ecb5fed33301d449424f5a5f875466aeb58601c73b26a471
MD5 9a3786ea5f3bb93fe91ec0908b02d754
BLAKE2b-256 2e95862194fd63622507d1887f2953cdf7eb21ed3b435d6ec39779ee68b5d346

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 00aa6937eb7936788bee4d418fdb418a4baaf862a17b82b9d0e3b6fa4699d8af
MD5 a07dfee841145fd9e885bebee55af745
BLAKE2b-256 6e49a83d331b1e609155a266bd25edd6e69c3991ab1e5f97e42033bef1c1c302

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d5cee6ff7ee225f36337d3eeab1f268088ce21a53cb915eb375b40be811e5f4a
MD5 1b517369f512b762501e14e83872b498
BLAKE2b-256 00775c74229e697b350c5518ecfa444fe9c1bae2ad0ed8349ea18b91e1a28ea8

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5966df89b83f2351070140e1bad6163fa3fd3fe19c3d5e787145b48d91a2f739
MD5 352126d59b38bcc37d387f0de32fd26f
BLAKE2b-256 88734e185ece4ea3853c919731a5baf139c88ebd5584574544af1f96df252ffe

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27d4f25ca3083e144993031ee1753dafd48974adf3de6771ce8c095eb18038b5
MD5 2e92804092bc166e850932645cece95d
BLAKE2b-256 dd34accb2c8e76d8003fa6855c515a6218ef5168b34644cbd96f1bc6ba61ed25

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9128272e50a43bb76a0e96d28e94f578ee081ebac20b84f3d193535392819cb2
MD5 bcfe79518b51185e2fb1f33ebfaa316f
BLAKE2b-256 ac70fc1d8e368e3320818a48d09efbd3ab6caaaff9110b6dba8a4198b1c7a974

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 164de10a0e320873c028cfc0a885eebc08ac2338001c55aff2dcfcc320714fe7
MD5 cd0a6f34baa1c4f5785ac1121e54f30e
BLAKE2b-256 0dbc9d6dcbe883b27f8073c4cce6e88bac6ba9958c5fa4bc800338ce19334734

See more details on using hashes here.

Provenance

File details

Details for the file envd-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9a57b695ad9112bd5df9612a1c3ef144450902e1c6de19d04ab6c38092aff59b
MD5 3f50e84d8b8bf9d08095383b979362bd
BLAKE2b-256 5af09af166b32f8a700a3c3b9619596d78b291f840fd2251e48a4628c132e705

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page