Skip to main content

Elasticsearch ODM inspired on MongoEngine

Project description

|PyPI| |versions| |Travis CI| |Coverage Status| |Code Health|

ESEngine - ElasticSearch ODM
============================

.. raw:: html

<p align="left" style="float:left" >


.. raw:: html

</p>

What is esengine?
=================

(Object Document Mapper) inspired by MongoEngine
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ESengine is ODM, you map elasticsearch indices in to Python objects,
those objects are defined using the **Document**, **EmbeddedDocument**
and **< type >Field** classes provided by ESEngine.

modeling
~~~~~~~~

Out of the box ESengine takes care only of the Document Modeling, this
includes Fields and its types and coercion, data mapping and the
generation of the basic CRUD operations (Create, Read, Update, Delete).

Communication
~~~~~~~~~~~~~

ESengine does not communicate direct with ElasticSearch, it only creates
the basic structure, to communicate it relies on an ES client providing
the transport methods (index, delete, update etc).

ES client
~~~~~~~~~

ESengine does not enforce the use of the official ElasticSearch client,
but you are encouraged to use it because it is well maintained and has
the support to **bulk** operations. Bu you are free to use another
client or create your own.

Querying the data
~~~~~~~~~~~~~~~~~

ESengine does not enforce or encourage you to use a DSL language for
queries, out of the box you have to write the elasticsearch **payload**
representation as a raw Python dictionary. However ESEngine comes with a
**utils.payload** helper module to help you building payloads in a less
verbose way.

Why not elasticsearch\_dsl?
~~~~~~~~~~~~~~~~~~~~~~~~~~~

ElasticSearch DSL is an excellent tool, a very nice effort by the
maintainers of the official ES library, it is handy in most of the
cases, but its DSL objects leads to a confuse query building, sometimes
it is better to write raw\_queries or use a simpler payload builder
having more control and visibility of what os being generated. DSL
enforce you to use the official ES client and there are cases when a
different client implementation perform better or you need to run tests
using a Mock. Also, to make things really easy, all the synrax sugar in
DSL can lead in to performance problems.

Project Stage
~~~~~~~~~~~~~

It is in beta-Release, working in production, but missing a lot of
features, you can help using, testing,, discussing or coding!

Getting started
===============

install
-------

ESengine needs a client to communicate with E.S, you can use one of the
following:

- ElasticSearch-py (official)
- Py-Elasticsearch (unofficial)
- Create your own implementing the same api-protocol
- Use the MockES provided as py.test fixture (only for tests)

Because of bulk operations you are recommendded to use
**elasticsearch-py** (Official E.S Python library) so the instalation
depends on the version of elasticsearch you are using.

Elasticsearch 2.x
~~~~~~~~~~~~~~~~~

.. code:: bash

pip install esengine[es2]

Elasticsearch 1.x
~~~~~~~~~~~~~~~~~

.. code:: bash

pip install esengine[es1]

Elasticsearch 0.90.x
~~~~~~~~~~~~~~~~~~~~

.. code:: bash

pip install esengine[es0]

The above command will install esengine and the elasticsearch library
specific for you ES version.

Alternatively you can only install elasticsearch library before
esengine

pip install ``<version-specific-es>``

- for 2.0 + use "elasticsearch>=2.0.0,<3.0.0"
- for 1.0 + use "elasticsearch>=1.0.0,<2.0.0"
- under 1.0 use "elasticsearch<1.0.0"

Then install esengine

.. code:: bash

pip install esengine

Usage
=====

.. code:: python

from elasticsearch import ElasticSearch
from esengine import Document, StringField

es = ElasticSearch(host='host', port=port)

Defining a document
-------------------

.. code:: python

class Person(Document):
_doctype = "person"
_index = "universe"

name = StringField()


If you do not specify an "id" field, ESEngine will automatically add
"id" as StringField. It is recommended that when specifying you use
StringField for ids.

Indexing
--------

.. code:: python

person = Person(id=1234, name="Gonzo")
person.save(es=es)

Getting by id
-------------

.. code:: python

Person.get(id=1234, es=es)

filtering by IDS
----------------

.. code:: python

ids = [1234, 5678, 9101]
power_trio = Person.filter(ids=ids)

filtering by fields
-------------------

.. code:: python

Person.filter(name="Gonzo", es=es)

Searching
---------

ESengine does not try to create abstraction for query building, by
default ESengine only implements search transport receiving a raw ES
query in form of a Python dictionary.

.. code:: python

query = {
"query": {
"filtered": {
"query": {
"match_all": {}
},
"filter": {
"ids": {
"values": [1, 2]
}
}
}
}
}
Person.search(query, size=10, es=es)

Getting all documents
---------------------

.. code:: python

Person.all(es=es)

# with more arguments

Person.all(size=20, es=es)

Counting
--------

.. code:: python

Person.count(name='Gonzo', es=es)

Using a default connection
--------------------------

By default ES engine does not try to implicit create a connection for
you, so you have to pass in **es=es** argument.

You can easily achieve this overwriting the **get\_es** method and
returning a default connection or using any kind of technique as
RoundRobin or Mocking for tests Also you can set the \*\*\_es\*\*
attribute pointing to a function generating the connection client or the
client instance as the following example:

.. code:: python


from elasticsearch import ElasticSearch
from esengine import Document, StringField
from esengine.utils import validate_client


class Person(Document):
_doctype = "person"
_index = "universe"
_es = Elasticsearch(host='10.0.0.0')

name = StringField()


Now you can use the document transport methods ommiting ES instance
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: python

person = Person(id=1234, name="Gonzo")
person.save()

Person.get(id=1234)

Person.filter(name="Gonzo")

Updating
--------

A single document
~~~~~~~~~~~~~~~~~

A single document can be updated simply using the **.save()** method

.. code:: python


person = Person.get(id=1234)
person.name = "Another Name"
person.save()

Updating a Resultset
~~~~~~~~~~~~~~~~~~~~

The Document methods **.get**, **.filter** and **.search** will return
an instance of **ResultSet** object. This object is an Iterator
containing the **hits** reached by the filtering or search process and
exposes some CRUD methods[ **update**, **delete** and **reload** ] to
deal with its results.

.. code:: python

people = Person.filter(field='value')
people.update(another_field='another_value')

When updating documents sometimes you need the changes done in the
E.S index reflected in the objects of the **ResultSet** iterator, so
you can use **.reload** method to perform that action.

The use of **reload** method
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. code:: python

people = Person.filter(field='value')
print people
... <Resultset: [{'field': 'value', 'another_field': None},
{'field': 'value', 'another_field': None}]>

# Updating another field on both instances
people.update(another_field='another_value')
print people
... <Resultset: [{'field': 'value', 'another_field': None}, {'field': 'value', 'another_field': None}]>

# Note that in E.S index the values weres changed but the current ResultSet is not updated by defaul
# you have to fire an update
people.reload()

print people
... <Resultset: [{'field': 'value', 'another_field': 'another_value'},
{'field': 'value', 'another_field': 'another_value'}]>

Deleting documents
~~~~~~~~~~~~~~~~~~

A ResultSet
^^^^^^^^^^^

.. code:: python

people = Person.all()
people.delete()

A single document
^^^^^^^^^^^^^^^^^

.. code:: python

Person.get(id=123).delete()

Bulk operations
---------------

ESEngine takes advantage of elasticsearch-py helpers for bulk actions,
the **ResultSet** object uses **bulk** melhod to **update** and
**delete** documents.

But you can use it in a explicit way using Document's **update\_all**,
\*\*save\_\_all\*\* and **delete\_all** methods.

Lets create a bunch of document instances
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code:: python

top_5_racing_bikers = []

for name in ['Eddy Merckx',
'Bernard Hinault',
'Jacques Anquetil',
'Sean Kelly',
'Lance Armstrong']:
top_5_racing_bikers.append(Person(name=name))

Save it all
^^^^^^^^^^^

.. code:: python

Person.save_all(top_5_racing_bikers)

Using the **create** shortcut
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The above could be achieved using **create** shortcut

A single
''''''''

.. code:: python

Person.create(name='Eddy Merckx', active=False)

Create will return the instance of the indexed Document

All using list comprehension
''''''''''''''''''''''''''''

.. code:: python

top_5_racing_bikers = [
Person.create(name=name, active=False)
for name in ['Eddy Merckx',
'Bernard Hinault',
'Jacques Anquetil',
'Sean Kelly',
'Lance Armstrong']
]

NOTE: **.create** method will automatically save the document to the
index, and will not raise an error if there is a document with the
same ID (if specified), it will update it acting as upsert.

Updating all
^^^^^^^^^^^^

Turning the field **active** to **True** for all documents

.. code:: python

Person.update_all(top_5_racing_bikes, active=True)

Deleting all
^^^^^^^^^^^^

.. code:: python

Person.delete_all(top_5_racing_bikes)

Chunck size
^^^^^^^^^^^

chunk\_size is number of docs in one chunk sent to ES (default: 500) you
can change using **meta** argument.

.. code:: python

Person.update_all(
top_5_racing_bikes, # the documents
active=True, # values to be changed
metal={'chunk_size': 200} # meta data passed to **bulk** operation
)

Utilities
^^^^^^^^^

Mapping
^^^^^^^

TODO:

Refreshing
^^^^^^^^^^

Sometimes you need to force indices-shards refresh for testing, you can
use

.. code:: python

# Will refresh all indices
Document.refresh()

Payload builder
===============

Sometimes queries turns in to complex and verbose data structures, to
help you (use with moderation) you can use Payload utils to build
queries.

Example using a raw query:
--------------------------

.. code:: python

query = {
"query": {
"filtered": {
"query": {
"match_all": {}
},
"filter": {
"ids": {
"values": [1, 2]
}
}
}
}
}

Person.search(query=query, size=10)

Same example using payload utils
--------------------------------

.. code:: python

from esengine.utils.payload import Payload, Query, Filter
payload = Payload(
query=Query.filtered(query=Query.match_all(), filter=Filter.ids([1, 2]))
)
Person.search(query=payload.dict, size=10)

Payload utils exposes Payload, Query, Filter, Aggregate, Suggesters

Contribute
==========

ESEngine is OpenSource! join us!

.. |PyPI| image:: https://img.shields.io/pypi/v/esengine.svg
:target: https://pypi-hypernode.com/pypi/esengine
.. |versions| image:: https://img.shields.io/pypi/pyversions/esengine.svg
:target: https://pypi-hypernode.com/pypi/esengine
.. |Travis CI| image:: http://img.shields.io/travis/catholabs/esengine.svg
:target: https://travis-ci.org/catholabs/esengine
.. |Coverage Status| image:: http://img.shields.io/coveralls/catholabs/esengine.svg
:target: https://coveralls.io/r/catholabs/esengine
.. |Code Health| image:: https://landscape.io/github/catholabs/esengine/master/landscape.svg?style=flat
:target: https://landscape.io/github/catholabs/esengine/master

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

esengine-0.0.5.tar.gz (23.6 kB view details)

Uploaded Source

Built Distribution

esengine-0.0.5-py2.py3-none-any.whl (33.4 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file esengine-0.0.5.tar.gz.

File metadata

  • Download URL: esengine-0.0.5.tar.gz
  • Upload date:
  • Size: 23.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for esengine-0.0.5.tar.gz
Algorithm Hash digest
SHA256 d8e1cdfee46afe95dea020e993ca467dc2c6856dcc22b533c7801cb21ffa00da
MD5 be5bfec239191b2fc045b99a1358c05a
BLAKE2b-256 cf4bec2796345a4d4655d39ca9ebab8d7624fa7703d6c0bf74aa36db820033d5

See more details on using hashes here.

File details

Details for the file esengine-0.0.5-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for esengine-0.0.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 556287b53323dfb9e63b770dc4ed9f41304faf29e72a00c3a8bbe2c16c362b33
MD5 7fef8a5d89bf4eb05a2a2d136411575e
BLAKE2b-256 5a784eb7fa8af2a2186c47ffff4b36c24ae4e002dd7c7da91c8dd352addb58f0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page