Skip to main content

ExoPy python package

Project description

Exosomians

Getting Started

Installation

Installation with pip

To install the latest version from PyPI, simply use the following bash script:

pip install exopy

or you can clone this repository and install via setup.py file:

git clone https://github.com/Exosomians/exosomians
cd exosomians
python setup.py -q

Examples

Inference

You can use pre-trained models to make predictions on your own datasets

import exopy as exo

# Load the pre-trained model
model = exo.ml.ExoGRU.load('./saved_models/ExoGRU/exogru_best-v2.ckpt')

# Prepare dataset
data = model.prepare_data('/path/to/fasta/data.fasta', seq_key='seq')

# Get the predictions 
df_results = model.predict(data, batch_size=128)  # Results will be stored in a pandas dataframe 

Train from scratch

import exopy as exo

exo.ml.ExoGRU.setup_dataset(path='/path/to/dataset/design.mat.csv',
                            seq_key='seq',
                            target_key='label',
                            fraction=1.0)

config = {
    'activation_fn': 'relu',
    'batch_size': 32,
    'bidirectional': False,
    'dropout_rate': 0.1,
    'lr': 0.00011342016019358544,
    'n_head_hidden': 512, 'n_head_layers': 2,
    'n_hidden': 1024,
    'n_layers': 1,
    'network': 'exogru',
    'use_batch_norm': True,
    'use_layer_norm': False
}

model = exo.ml.ExoGRU(**config)

model.fit(max_epochs=2000,
          train_size=0.8,
          batch_size=128,
          early_stopping_patience=5,
          check_val_every_n_epoch=3,
          save_path='./saved_models/ExoGRU/',
          )

Sample Notebooks

Model Path
ExoGRU notebooks/training_demos/ExoGRU.ipynb
ExoCNN notebooks/training_demos/ExoCNN.ipynb
ExoLSTM notebooks/training_demos/ExoLSTM.ipynb

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

exosomians-0.1.0.tar.gz (30.0 kB view details)

Uploaded Source

Built Distribution

exosomians-0.1.0-py3-none-any.whl (18.1 kB view details)

Uploaded Python 3

File details

Details for the file exosomians-0.1.0.tar.gz.

File metadata

  • Download URL: exosomians-0.1.0.tar.gz
  • Upload date:
  • Size: 30.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.1 CPython/3.9.13 Linux/5.4.0-132-generic

File hashes

Hashes for exosomians-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d36c2e6106424407d889e038fcd6028967f1ede9e6ae8e4f71ad5a8408c20027
MD5 f37eabf639b80e561b97059b95a98cf2
BLAKE2b-256 50cc205e5a4c4f86988c9166653b64b0bd0a237982cdfd722dd0e3045d824106

See more details on using hashes here.

File details

Details for the file exosomians-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: exosomians-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 18.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.1 CPython/3.9.13 Linux/5.4.0-132-generic

File hashes

Hashes for exosomians-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 529878f02b250c3d45f837653449820bf67a00811cdb9bd55e355cb16055150c
MD5 8ee5ad0110558661fc0885f8794d3e4b
BLAKE2b-256 0c2512cd23108af8615cbd79281f56ee88a10de22995a2ffad4f04dce0c486a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page