Skip to main content

A package for running predictions using fAIr

Project description

fAIr Predictor

Run your fAIr Model Predictions anywhere !

Example on Collab

# Install 
!pip install fairpredictor

# Import 
from predictor import predict

# Parameters for your predictions 
bbox=[100.56228021333352,13.685230854641182,100.56383321235313,13.685961853747969]
model_path='checkpoint.h5'
zoom_level=20
tms_url='https://tiles.openaerialmap.org/6501a65c0906de000167e64d/0/6501a65c0906de000167e64e/{z}/{x}/{y}'

# Run your prediction 
my_predictions=predict(bbox,model_path,zoom_level,tms_url)
print(my_predictions)

## Visualize your predictions 

import geopandas as gpd
import matplotlib.pyplot as plt
gdf = gpd.GeoDataFrame.from_features(my_predictions)
gdf.plot()
plt.show()

Works on CPU ! Can work on serverless functions, No other dependencies to run predictions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fairpredictor-0.0.14.tar.gz (8.8 kB view details)

Uploaded Source

File details

Details for the file fairpredictor-0.0.14.tar.gz.

File metadata

  • Download URL: fairpredictor-0.0.14.tar.gz
  • Upload date:
  • Size: 8.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for fairpredictor-0.0.14.tar.gz
Algorithm Hash digest
SHA256 790966735d93a96f7a05b4cb22735e9158766d7bdae7bc96748311d8944f04a1
MD5 ed7cea157c1e6edea453b55af19d6eb3
BLAKE2b-256 cb8c2b17dae00ade40767f13d150aac5ac0d0f02e1c387d6e4db1b70873e728e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page