Skip to main content

A package for running predictions using fAIr

Project description

fAIr Predictor

Run your fAIr Model Predictions anywhere !

Example on Collab

# Install 
!pip install fairpredictor

# Import 
from predictor import predict

# Parameters for your predictions 
bbox=[100.56228021333352,13.685230854641182,100.56383321235313,13.685961853747969]
model_path='checkpoint.h5'
zoom_level=20
tms_url='https://tiles.openaerialmap.org/6501a65c0906de000167e64d/0/6501a65c0906de000167e64e/{z}/{x}/{y}'

# Run your prediction 
my_predictions=predict(bbox,model_path,zoom_level,tms_url)
print(my_predictions)

## Visualize your predictions 

import geopandas as gpd
import matplotlib.pyplot as plt
gdf = gpd.GeoDataFrame.from_features(my_predictions)
gdf.plot()
plt.show()

Works on CPU ! Can work on serverless functions, No other dependencies to run predictions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fairpredictor-0.0.15.tar.gz (8.9 kB view details)

Uploaded Source

File details

Details for the file fairpredictor-0.0.15.tar.gz.

File metadata

  • Download URL: fairpredictor-0.0.15.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for fairpredictor-0.0.15.tar.gz
Algorithm Hash digest
SHA256 1b3f2361d4837f9dc343f48eb019251ad6da0fe0cf7c250d8f9f78cc3b668468
MD5 2380d8327f4b6bd69407e30ece14b8ba
BLAKE2b-256 8eb3303d76f329f91da73a259ec1613a8aba3c3d4ae520268d88b074f6d2c4b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page