Skip to main content

A package for running predictions using fAIr

Project description

fAIr Predictor

Run your fAIr Model Predictions anywhere !

Example on Collab

# Install 
!pip install fairpredictor

# Import 
from predictor import predict

# Parameters for your predictions 
bbox=[100.56228021333352,13.685230854641182,100.56383321235313,13.685961853747969]
model_path='checkpoint.h5'
zoom_level=20
tms_url='https://tiles.openaerialmap.org/6501a65c0906de000167e64d/0/6501a65c0906de000167e64e/{z}/{x}/{y}'

# Run your prediction 
my_predictions=predict(bbox,model_path,zoom_level,tms_url)
print(my_predictions)

## Visualize your predictions 

import geopandas as gpd
import matplotlib.pyplot as plt
gdf = gpd.GeoDataFrame.from_features(my_predictions)
gdf.plot()
plt.show()

Works on CPU ! Can work on serverless functions, No other dependencies to run predictions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fairpredictor-0.0.16.tar.gz (8.9 kB view details)

Uploaded Source

File details

Details for the file fairpredictor-0.0.16.tar.gz.

File metadata

  • Download URL: fairpredictor-0.0.16.tar.gz
  • Upload date:
  • Size: 8.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for fairpredictor-0.0.16.tar.gz
Algorithm Hash digest
SHA256 5a977bbe8ae3a21c5fcdf8e1d5b331fbc08a2c62349c6402bd8934622d10e575
MD5 66675eefff57dd0e5fe75dda30f35669
BLAKE2b-256 9b67e91f6f3364102f7ce9905fed430b1eb8c171f91caca44912f26b16b384ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page