Skip to main content

A package for running predictions using fAIr

Project description

fAIr Predictor

Run your fAIr Model Predictions anywhere !

Example on Collab

# Install 
!pip install fairpredictor

# Import 
from predictor import predict

# Parameters for your predictions 
bbox=[100.56228021333352,13.685230854641182,100.56383321235313,13.685961853747969]
model_path='checkpoint.h5'
zoom_level=20
tms_url='https://tiles.openaerialmap.org/6501a65c0906de000167e64d/0/6501a65c0906de000167e64e/{z}/{x}/{y}'

# Run your prediction 
my_predictions=predict(bbox,model_path,zoom_level,tms_url)
print(my_predictions)

## Visualize your predictions 

import geopandas as gpd
import matplotlib.pyplot as plt
gdf = gpd.GeoDataFrame.from_features(my_predictions)
gdf.plot()
plt.show()

Works on CPU ! Can work on serverless functions, No other dependencies to run predictions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fairpredictor-0.0.17.tar.gz (9.2 kB view details)

Uploaded Source

File details

Details for the file fairpredictor-0.0.17.tar.gz.

File metadata

  • Download URL: fairpredictor-0.0.17.tar.gz
  • Upload date:
  • Size: 9.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for fairpredictor-0.0.17.tar.gz
Algorithm Hash digest
SHA256 770f71c1aa57e11e764d36571795f0265fbb0c6636da95482c5cae245fd606d2
MD5 f5e03a35b60737cb985df3ad2111fcb9
BLAKE2b-256 46934ba48d9a7b9887f5dd605b8318a8eda0bacd809709ebad7aabb582e53143

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page