Skip to main content

A package for running predictions using fAIr

Project description

fAIr Predictor

Run your fAIr Model Predictions anywhere !

Example on Collab

# Install 
!pip install fairpredictor

# Import 
from predictor import predict

# Parameters for your predictions 
bbox=[100.56228021333352,13.685230854641182,100.56383321235313,13.685961853747969]
model_path='checkpoint.h5'
zoom_level=20
tms_url='https://tiles.openaerialmap.org/6501a65c0906de000167e64d/0/6501a65c0906de000167e64e/{z}/{x}/{y}'

# Run your prediction 
my_predictions=predict(bbox,model_path,zoom_level,tms_url)
print(my_predictions)

## Visualize your predictions 

import geopandas as gpd
import matplotlib.pyplot as plt
gdf = gpd.GeoDataFrame.from_features(my_predictions)
gdf.plot()
plt.show()

Works on CPU ! Can work on serverless functions, No other dependencies to run predictions

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fairpredictor-0.0.18.tar.gz (9.2 kB view details)

Uploaded Source

File details

Details for the file fairpredictor-0.0.18.tar.gz.

File metadata

  • Download URL: fairpredictor-0.0.18.tar.gz
  • Upload date:
  • Size: 9.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for fairpredictor-0.0.18.tar.gz
Algorithm Hash digest
SHA256 5e0bc6ac1c5840bceb56698cbb737d2299ad169b4deda7e3dd4dc297205af134
MD5 3afe4b636781b2b1075f7dad1b4c73bc
BLAKE2b-256 aeed300b3d889fa2fc3fc23f9c40f7c6aba555ce61a3c56b6be38b8219919d2b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page