A package for running predictions using fAIr
Project description
fAIr Predictor
Run your fAIr Model Predictions anywhere !
Example on Collab
# Install
!pip install fairpredictor
# Import
from predictor import predict
# Parameters for your predictions
bbox=[100.56228021333352,13.685230854641182,100.56383321235313,13.685961853747969]
model_path='checkpoint.h5'
zoom_level=20
tms_url='https://tiles.openaerialmap.org/6501a65c0906de000167e64d/0/6501a65c0906de000167e64e/{z}/{x}/{y}'
# Run your prediction
my_predictions=predict(bbox,model_path,zoom_level,tms_url)
print(my_predictions)
## Visualize your predictions
import geopandas as gpd
import matplotlib.pyplot as plt
gdf = gpd.GeoDataFrame.from_features(my_predictions)
gdf.plot()
plt.show()
Works on CPU ! Can work on serverless functions, No other dependencies to run predictions
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fairpredictor-0.0.18.tar.gz
(9.2 kB
view details)
File details
Details for the file fairpredictor-0.0.18.tar.gz
.
File metadata
- Download URL: fairpredictor-0.0.18.tar.gz
- Upload date:
- Size: 9.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e0bc6ac1c5840bceb56698cbb737d2299ad169b4deda7e3dd4dc297205af134 |
|
MD5 | 3afe4b636781b2b1075f7dad1b4c73bc |
|
BLAKE2b-256 | aeed300b3d889fa2fc3fc23f9c40f7c6aba555ce61a3c56b6be38b8219919d2b |