Skip to main content

A package for running predictions using fAIr

Project description

fAIr Predictor

Run your fAIr Model Predictions anywhere !

Prerequisites

fAIr Predictor has support for GPU , CPU and tflite based devices

  • Install tensorflow-cpu or tflite-runtime according to your requirements

tflite-runtime support is for having very light deployment in order to run inference & tensorflow-cpu might require installation of efficientnet

Example on Collab

# Install 
!pip install fairpredictor

# Import 
from predictor import predict

# Parameters for your predictions 
bbox=[100.56228021333352,13.685230854641182,100.56383321235313,13.685961853747969]
model_path='checkpoint.h5'
zoom_level=20
tms_url='https://tiles.openaerialmap.org/6501a65c0906de000167e64d/0/6501a65c0906de000167e64e/{z}/{x}/{y}'

# Run your prediction 
my_predictions=predict(bbox,model_path,zoom_level,tms_url)
print(my_predictions)

## Visualize your predictions 

import geopandas as gpd
import matplotlib.pyplot as plt
gdf = gpd.GeoDataFrame.from_features(my_predictions)
gdf.plot()
plt.show()

Works on CPU ! Can work on serverless functions, No other dependencies to run predictions

Use raster2polygon

There is another postprocessing option that supports distance threshold between polygon for merging them , If it is useful for you install raster2polygon by :

pip install raster2polygon

Load Testing

CAUTION : Always take permission of server admin before you perform load test

In order to perform load testing we use Locust , To enable this hit following command within the root dir

  • Install locust

    pip install locust
    
  • Run locust script

    locust -f locust.py
    

Populate your HOST and replace it with BASE URL of the Predictor URL

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

fairpredictor-0.0.31-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file fairpredictor-0.0.31-py3-none-any.whl.

File metadata

File hashes

Hashes for fairpredictor-0.0.31-py3-none-any.whl
Algorithm Hash digest
SHA256 8b7cef61140989a892c8eb2c0d8b27f2c3ad43f44accd1d6564ea08db897dc6c
MD5 8e77d1088e9b996fb6143572bf4db436
BLAKE2b-256 1d9d419135cd59e03cb6a7033080a304c5842a3f7ee45d9cf1295e9f0509e818

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page