Skip to main content

Facebook AI Research Sequence-to-Sequence Toolkit

Project description

Introduction

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.

What's New:

Features:

Fairseq provides reference implementations of various sequence-to-sequence models, including:

Additionally:

  • multi-GPU (distributed) training on one machine or across multiple machines
  • fast generation on both CPU and GPU with multiple search algorithms implemented:
  • large mini-batch training even on a single GPU via delayed updates
  • mixed precision training (trains faster with less GPU memory on NVIDIA tensor cores)
  • extensible: easily register new models, criterions, tasks, optimizers and learning rate schedulers

We also provide pre-trained models for several benchmark translation and language modeling datasets.

Model

Requirements and Installation

  • PyTorch version >= 1.0.0
  • Python version >= 3.5
  • For training new models, you'll also need an NVIDIA GPU and NCCL

Please follow the instructions here to install PyTorch: https://github.com/pytorch/pytorch#installation.

If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run.

After PyTorch is installed, you can install fairseq with pip:

pip install fairseq

On MacOS,

CFLAGS="-stdlib=libc++" pip install fairseq

Installing from source

To install fairseq from source and develop locally:

git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable .

Improved training speed

Training speed can be further improved by installing NVIDIA's apex library with the --cuda_ext option. fairseq will automatically switch to the faster modules provided by apex.

Getting Started

The full documentation contains instructions for getting started, training new models and extending fairseq with new model types and tasks.

Pre-trained models and examples

We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below, as well as example training and evaluation commands.

We also have more detailed READMEs to reproduce results from specific papers:

Join the fairseq community

License

fairseq(-py) is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as:

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fairseq-0.8.0.tar.gz (216.3 kB view details)

Uploaded Source

File details

Details for the file fairseq-0.8.0.tar.gz.

File metadata

  • Download URL: fairseq-0.8.0.tar.gz
  • Upload date:
  • Size: 216.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.25.0 CPython/3.6.9

File hashes

Hashes for fairseq-0.8.0.tar.gz
Algorithm Hash digest
SHA256 55dfedb630ba76ac6c25bf443fd624ce78e097b4820fdc3b1c6d2b153e9f212e
MD5 b3fcd8aeb7a7420636040b54fd2c8d47
BLAKE2b-256 6219a71af3ea3bdf7c2fd66c8076a3be090147f700e3e513b0b3b11d80d97fe3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page