Skip to main content

A library for efficient similarity search and clustering of dense vectors.

Project description

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. It is developed by Facebook AI Research.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

faiss-cpu-1.7.1.tar.gz (40.3 kB view details)

Uploaded Source

Built Distributions

faiss_cpu-1.7.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

faiss_cpu-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

faiss_cpu-1.7.1-cp39-cp39-macosx_10_14_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

faiss_cpu-1.7.1-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

faiss_cpu-1.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

faiss_cpu-1.7.1-cp38-cp38-macosx_10_14_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

faiss_cpu-1.7.1-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

faiss_cpu-1.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

faiss_cpu-1.7.1-cp37-cp37m-macosx_10_14_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

faiss_cpu-1.7.1-cp36-cp36m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

faiss_cpu-1.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

faiss_cpu-1.7.1-cp36-cp36m-macosx_10_14_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file faiss-cpu-1.7.1.tar.gz.

File metadata

  • Download URL: faiss-cpu-1.7.1.tar.gz
  • Upload date:
  • Size: 40.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for faiss-cpu-1.7.1.tar.gz
Algorithm Hash digest
SHA256 3436847901f295f95120f1dc88cbf5b5df07672f86a77c1926aa6d75bc612797
MD5 1a87e59dea316743c6785f75ace5365d
BLAKE2b-256 e791144a1498bf4795534120496d49f480ad656fba3a86b95798bbdf3475d72c

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for faiss_cpu-1.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 23f98847de2fbc3ff0425bae9fada9a8f1f094dfcdd71a71f8db8a1ae24f391a
MD5 104033e5b5e1ef3d8f22ea5583ade696
BLAKE2b-256 9c4cbf1b6c6577d64cc1f34e2c5033f6e195bedc1be9fcc93762fd444c1eaea1

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_cpu-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb27b67e82b33e04d516bdb431a1873e5e1ce2c07539fa86c868e0806aeb1afd
MD5 2b4512fc0c8901d4f0399202fa4f7646
BLAKE2b-256 f18cd8d373e05b37791ae257bd1e50aeab19abe067db9350839a096927812312

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for faiss_cpu-1.7.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 424eb3ff4702fb71af1176e3a8d99c4d6e35ffd311c25b2f15286813199d2f9e
MD5 d718a020712fb4616fd819bbcccc6006
BLAKE2b-256 5abce50aa2c030ed84cfab33c1b65d791c61e5d2700f5bb18ef2de2c8eccbad6

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for faiss_cpu-1.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d42ddecc5d12a6c1cad59490b33a564d8fa68961b1b0e17bbf2b216c692aa723
MD5 f082230a64aa171dc9b6472861a9992f
BLAKE2b-256 475da8e4b273f051943fe4bceed8c28b9acd09696e71127f8176e66a7a36d349

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_cpu-1.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46caa29772b7acc2a0a4a97ea249eb1e0ffd7b6c25f1c78bdca5a447ce9e87d7
MD5 e66d2f8eeb6f60b874c2e97f8c7a58d5
BLAKE2b-256 a0f2d7b240c87b2e41fa89367568e1c0667f12895d183a7f797aba775f9faeeb

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for faiss_cpu-1.7.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 623b0eaea146e3c6f84a5b4140898c02f845220ccc312e0037f6cbf2cee89d62
MD5 17bd0a6b5ace65e3ec032ace23be10b7
BLAKE2b-256 ef433c35348cb47ec2dbd443136b43cc181254bc0319936d4a6f9e20c31e9d02

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for faiss_cpu-1.7.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e9cd96a2bc48357bf620c87f843d03bdfbdfa7767ddc4d9569f67c6974c534e6
MD5 7b3e89275624450c0251b89cd4986fc1
BLAKE2b-256 ebb6309c8a41cbf18b686a21bbf65aab6a3b04f42e54834ff3948e93f398b844

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_cpu-1.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d764873d76d2d824b6e06458b5981167f92aeb5a5c29947725c3a63b27f46856
MD5 579ebedcd18136ca3f739a0a082039a3
BLAKE2b-256 ee53fab217276242ffc3853f428512f0d130a9732da8d794edb84bc66b53c409

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for faiss_cpu-1.7.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b649c87ea3d24e4e016a998255444d63170f926c7dc4f6018e0410575ed22362
MD5 9b3f8c5804d1487e035c841f47efeb8d
BLAKE2b-256 318d9856019fd2e2917f79f378f16b63c860aced7a22a1235114dc0050fb1502

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.13

File hashes

Hashes for faiss_cpu-1.7.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5a0698754db327c23b36637e198485178fa54136f5e8f4d41d2f2b4b12397cd3
MD5 e99ab96d1b26b9a1740729cac57afdac
BLAKE2b-256 b3b3fcea779c521562f79d7606420c6ce7e86b6f0b366e03db1f7188d6f321c7

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_cpu-1.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24bdffaeafc42b35279f516d6a8ed4c6b3b4f0c3799cc76c6d20f888bc90056a
MD5 aecf354fdc34634ab424b05600c3941c
BLAKE2b-256 7f27159dd7cb8d39232ee6ac907378981a3c2c5c960e94d88f401511eb8874b9

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.13

File hashes

Hashes for faiss_cpu-1.7.1-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 61122278b0914ab531fe8ec779ef08c5db8b3945fcb43ec2f202ff51e9899e75
MD5 d92552d2e945d2a799787cc6e2e1ac90
BLAKE2b-256 c342a02663b52a8e04dc65b6e5a550b414f0ac573737ee1dc6e7288f50d7fce9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page