Skip to main content

A library for efficient similarity search and clustering of dense vectors.

Project description

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. It is developed by Facebook AI Research.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file faiss_gpu-1.6.4.post2-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: faiss_gpu-1.6.4.post2-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 67.6 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.9.0

File hashes

Hashes for faiss_gpu-1.6.4.post2-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 44ff1f27c9320f57a95863d02da702bf0c600b449bcc8fd997c56bf54986f028
MD5 ed75c36e6893a37b0ca4963fbfea8843
BLAKE2b-256 809ddb5b458d115d5ec473d4d22a99be3a61721ffb34ec9e5e0ab155a75638de

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.6.4.post2-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: faiss_gpu-1.6.4.post2-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 67.6 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.6

File hashes

Hashes for faiss_gpu-1.6.4.post2-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 954fd1d280b20d1d6eaf3a62c83c4e5ecb2dba6526198a83379fed090765b498
MD5 58d927d7402bdca78d3e362f1376ed02
BLAKE2b-256 c710497e0c7aa5a1f8ac3f93c38a516e162114549e9ffea1e41cc4649a88f5f0

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.6.4.post2-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.6.4.post2-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ef574d9080a13cac7482779cca09ef6a5ef564347d62418994163a14d9e9591
MD5 2ff36cf52f507eb1aae800ea98119345
BLAKE2b-256 06009497012f1924b957396630f8280119d3f8276589b076fb1ddd0f8dfe27ad

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.6.4.post2-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.6.4.post2-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26ffcf9fe18b095f3fc9673ba04a4057547d6998bcd0fc7ad0c34e88cf5d67d7
MD5 dd64a0045d71a7d41b94eb9c8e39eeaf
BLAKE2b-256 5a6b1e316d731ce94821854cd54d04b4a0dd3e3c5d47292d9a373b56a8e19a8f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page