Skip to main content

A library for efficient similarity search and clustering of dense vectors.

Project description

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. It is developed by Facebook AI Research.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

faiss_gpu-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (89.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (89.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (89.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (89.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file faiss_gpu-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d91dd83735f2c5721854f88c86588b16f16e9d75072bba6947ddc7ef972a5592
MD5 608972576339cdf02ea4520aae394910
BLAKE2b-256 3e53555641722df6ede3a16ca525bb41089c4da2b502f470c949b79dcaaebab9

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e49b1cf9cd92d2bcbf0d50200c69fe033ee42cc44c7b7d98de4aa98e8dc69838
MD5 c414ad4dfacede15a60aaee3625a8eda
BLAKE2b-256 f40dabd828ae347ae7aadba57fdfc649f21d2f982484eb15576179fde374bb91

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 158ebf82ffae92e1be15dfc11234c01d216cbcc349a67737c4492c15a7fdb95a
MD5 497e767f3d44ae0d699727aa35f02361
BLAKE2b-256 80fe9b6935d62fc0dd9aff2bd6af3652dc9e0b70e989b6724ebcebdd174db64a

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9f58c68a0bbc62511b184baf916365ac83adfe978969f79ba15f096ffc10e6b4
MD5 1a79b9ab3099ad9cf9df2b645814d907
BLAKE2b-256 b0cbc1cc9c9e9d21cd69ab4b33fbc8258aee3fc13b81dbe7e89a343911358d08

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page