Skip to main content

A library for efficient similarity search and clustering of dense vectors.

Project description

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. It is developed by Facebook AI Research.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

faiss_gpu-1.7.1.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (89.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (89.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (89.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (89.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file faiss_gpu-1.7.1.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e933dae0c83c99d4a6bf935404d4c035af11f5653b5d35609c9d761e8a59dfdd
MD5 85a46670a12273c7068569ebc734a25e
BLAKE2b-256 dc5d5eebf4828da2da551e833b38b1a375493581505f6ebcd36730a5e99b6b9d

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62a5e27a43b7947a013c9e4dee481b2fcc09f8c939a65cd7074e483d15a2218a
MD5 0e17f6ccfe305ae4ba8e840b2b549b6b
BLAKE2b-256 8049848ea3bcffd605ef9d75e542fd9c982a0b9c52c9066e24e5a2e8e1974057

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 461d320132e0121b1607f3053bcd81cdb55542ba31b574f3abd0bc9c1563b74b
MD5 77586e0c9cc732e247b43e37c14cf965
BLAKE2b-256 23fb349d3df690ff80c8c74f15f9bb1004e16ff20d0a8427b14f035e9cd2f013

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b8deadacc12f209b7eb0a5dd118c695144e847ee3edff9243f36ccc14818e5e
MD5 bf9591f27cd7c6a87c84f14d34af59fb
BLAKE2b-256 44915d7302c9a70c7a81329e352c604cdda1857eff23d155c6fe069adce3cf37

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page