Skip to main content

A library for efficient similarity search and clustering of dense vectors.

Project description

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. It is developed by Facebook AI Research.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

faiss_gpu-1.7.1.post3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (90.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1.post3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (90.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1.post3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (90.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1.post3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (90.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

faiss_gpu-1.7.1.post3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (90.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

File details

Details for the file faiss_gpu-1.7.1.post3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1.post3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9230a496a6c5eceb16b02caf71e2a32621dfec611d6ffc74473528d539372176
MD5 4d15d46fc71b2550f95b20eca57341e4
BLAKE2b-256 027acbc6db95d95a7f691e9f0038b12c36b5f5fa5b3831da2952799a196dedcb

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1.post3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1.post3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73d5b5609c1302a7edd3687c72000d972f770e7b5e3e33277402f9d2af580d17
MD5 872e77562dd272e99618a3b3d8b453fb
BLAKE2b-256 1a76610ef522259c71b4b5ac0f43316be7a29ae717c274fc2a4d47318592dbea

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1.post3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1.post3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e1e9ea78f5375c1c2908c9200a2a5b9434b58bddbc6fe9af1e7704edaceafc9
MD5 8f9c2821aaf93cbba07b89254cbe739f
BLAKE2b-256 5dfebd81be875da88ac102ee19dde7a2df6ef6602f705c3f866af9d9235f0248

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1.post3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1.post3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5934b63db7eb420ea62bfe3a2f45861822e453e4f4cd955a6ab47a6eebec889
MD5 7be0503be6b979ff636fd5176df3b0d1
BLAKE2b-256 0af572333cc53e9b71fed07e918ac18f03a50a3d45673096672466508a342e17

See more details on using hashes here.

File details

Details for the file faiss_gpu-1.7.1.post3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_gpu-1.7.1.post3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00315534ea418b81b3dc5a5d103a9fa973a8e0bd66d7051be5f6a6a588ba74b5
MD5 03ccd6a3b9f1930ca0d4af7eb7d580bb
BLAKE2b-256 102e6e22052ad8d63abdcc90d3f3f2fa84683cefca1cdfca7cfec5d6a1f87e1c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page