Skip to main content

Faiss implementation of multiclass and multilabel K-Nearest Neighbors Classifiers

Project description

FAISSKNN

faissknn contains implementations for both multiclass and multilabel K-Nearest Neighbors Classifier implementations. The classifiers follow the scikit-learn: fit, predict, and predict_proba methods.

Install

The FAISS authors recommend to install faiss through conda e.g. conda install -c pytorch faiss-gpu. See FAISS install page for more info.

Once faiss is installed, faissknn can be install through pypi:

pip install faissknn

Usage

Multiclass:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

from faissknn import FaissKNNClassifier

x, y = make_classification()
x_train, x_test, y_train, y_test = train_test_split(x, y)
model = FaissKNNClassifier(
    n_neighbors=5,
    n_classes=None,
    device="cpu"
)
model.fit(x_train, y_train)

y_pred = model.predict(x_test) # (N,)
y_proba = model.predict_proba(x_test) # (N, C)

Multilabel:

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

from faissknn import FaissKNNMultilabelClassifier

x, y = make_multilabel_classification()
x_train, x_test, y_train, y_test = train_test_split(x, y)
model = FaissKNNClassifier(
    n_neighbors=5,
    device="cpu"
)
model.fit(x_train, y_train)

y_pred = model.predict(x_test) # (N, C)
y_proba = model.predict_proba(x_test) # (N, C)

GPU/CUDA: faissknn also supports running on the GPU to speed up computation. Simply change the device to cuda or a specific cuda device cuda:0

model = FaissKNNClassifier(
    n_neighbors=5,
    device="cuda"
)
model = FaissKNNClassifier(
    n_neighbors=5,
    device="cuda:0"
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

faissknn-0.0.1.tar.gz (5.0 kB view details)

Uploaded Source

Built Distribution

faissknn-0.0.1-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file faissknn-0.0.1.tar.gz.

File metadata

  • Download URL: faissknn-0.0.1.tar.gz
  • Upload date:
  • Size: 5.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for faissknn-0.0.1.tar.gz
Algorithm Hash digest
SHA256 d81a34949681c88a4bbce712102078ed8115b8402ca19966116a1a9ea81a2e87
MD5 fa5b208f2932c4920345acd0b4608ba7
BLAKE2b-256 72e05b2fd177311d93d259db16dc9b6d7afe32e1b45dd61a3f812c0bfd099530

See more details on using hashes here.

File details

Details for the file faissknn-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: faissknn-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for faissknn-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e0ffd8aa5a33074d9d98f3cb7eaa6c3732d73bb9986c17ced93a17b157dd0303
MD5 dd657e2d765a66434b34c5dc581ab432
BLAKE2b-256 07433aa0fa6cef39134a51fa947dff793ee49402707bbdca0190e9ac728d4b02

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page