Skip to main content

Minimalistic, standalone alternative fake data generator with no dependencies.

Project description

Minimalistic, standalone alternative fake data generator with no dependencies.

PyPI Version Supported Python versions Build Status Documentation Status MIT Coverage

fake.py is a standalone, portable library designed for generating various random data types for testing.

It offers a simplified, dependency-free alternative for creating random texts, (person) names, URLs, dates, file names, IPs, primitive Python data types (such as uuid, str, int, float, bool), GEO data such as city, country, geo-location, country code, latitude, longitude and locales, IBANs and ISBNs, as well as byte content for multiple file formats including PDF, DOCX, ODT, PNG, SVG, BMP, GIF, TIF, PPM, WAV, ZIP, TAR and EML.

The package also supports file creation on the filesystem and includes factories (dynamic fixtures) compatible with Django, TortoiseORM, Pydantic and SQLAlchemy (which means it works with SQLModel too).

Features

  • Generation of random texts, (person) names, emails, URLs, dates, IPs, and primitive Python data types.

  • Support for various file formats (PDF, DOCX, ODT, TXT, PNG, SVG, BMP, GIF, TIF, PPM, WAV, ZIP, TAR, EML) and file creation on the filesystem.

  • Basic factories for integration with Django, Pydantic, TortoiseORM and SQLAlchemy.

  • CLI for generating data from command line.

Prerequisites

Python 3.9+

Installation

pip

pip install fake.py

Download and copy

fake.py is the sole, self-contained module of the package. It includes tests too. If it’s more convenient to you, you could simply download the fake.py module and include it in your repository.

Since tests are included, it won’t have a negative impact on your test coverage (you might need to apply tweaks to your coverage configuration).

Documentation

Usage

Generate data

Person names

from fake import FAKER

FAKER.first_name()  # str
FAKER.first_names()  # list[str]
FAKER.last_name()  # str
FAKER.last_names()  # list[str]
FAKER.name()  # str
FAKER.names()  # list[str]
FAKER.username()  # str
FAKER.usernames()  # list[str]

Random texts

from fake import FAKER

FAKER.password()  # str
FAKER.paragraph()  # str
FAKER.paragraphs()  # list[str]
FAKER.sentence()  # str
FAKER.sentences()  # list[str]
FAKER.slug()  # str
FAKER.slugs()  # list[str]
FAKER.text()  # str
FAKER.texts()  # list[str]
FAKER.word()  # str
FAKER.words()  # list[str]

Internet

from fake import FAKER

FAKER.company_email()  # str
FAKER.domain_name()  # str
FAKER.email()  # str
FAKER.free_email()  # str
FAKER.free_email_domain()  # str
FAKER.image_url()  # str
FAKER.ipv4()  # str
FAKER.tld()  # str
FAKER.url()  # str

Filenames

from fake import FAKER

FAKER.file_extension()  # str
FAKER.file_name()  # str
FAKER.mime_type()  # str

Primitive data types

from fake import FAKER

FAKER.pybool()  # bool
FAKER.pyfloat()  # flot
FAKER.pyint()  # int
FAKER.pystr()  # str
FAKER.uuid()  # uuid.UUID

Dates

from fake import FAKER

FAKER.date()  # datetime.date
FAKER.date_time()  # datetime.datetime

Geographic data

from fake import FAKER

FAKER.city()  # str
FAKER.country()  # str
FAKER.geo_location()  # str
FAKER.country_code()  # str
FAKER.locale()  # str
FAKER.latitude()  # float
FAKER.longitude()  # float
FAKER.latitude_longitude()  # tuple[float, float]

Books

from fake import FAKER

FAKER.isbn10()  # str
FAKER.isbn13()  # str

Banking

from fake import FAKER

FAKER.iban()  # str

Generate files

As bytes

from fake import FAKER

FAKER.bmp()  # bytes
FAKER.docx()  # bytes
FAKER.eml()  # bytes
FAKER.gif()  # bytes
FAKER.odt()  # bytes
FAKER.pdf()  # bytes
FAKER.png()  # bytes
FAKER.ppm()  # bytes
FAKER.svg()  # bytes
FAKER.tar()  # bytes
FAKER.tif()  # bytes
FAKER.wav()  # bytes
FAKER.zip()  # bytes

As files on the file system

from fake import FAKER

FAKER.bmp_file()  # str
FAKER.docx_file()  # str
FAKER.eml_file()  # str
FAKER.gif_file()  # str
FAKER.odt_file()  # str
FAKER.pdf_file()  # str
FAKER.png_file()  # str
FAKER.ppm_file()  # str
FAKER.svg_file()  # str
FAKER.tar_file()  # str
FAKER.tif_file()  # str
FAKER.txt_file()  # str
FAKER.wav_file()  # str
FAKER.zip_file()  # str

Factories/dynamic fixtures

This is how you could define factories for Django’s built-in Group and User models.

Filename: factories.py

from django.contrib.auth.models import Group, User
from fake import (
    DjangoModelFactory,
    FACTORY,
    PostSave,
    PreSave,
    trait,
)


class GroupFactory(DjangoModelFactory):
    """Group factory."""

    name = FACTORY.word()

    class Meta:
        model = Group
        get_or_create = ("name",)


def set_password(user: User, password: str) -> None:
    """Helper function for setting password for the User."""
    user.set_password(password)


def add_to_group(user: User, name: str) -> None:
    """Helper function for adding the User to a Group."""
    group = GroupFactory(name=name)
    user.groups.add(group)


class UserFactory(DjangoModelFactory):
    """User factory."""

    username = FACTORY.username()
    first_name = FACTORY.first_name()
    last_name = FACTORY.last_name()
    email = FACTORY.email()
    date_joined = FACTORY.date_time()
    last_login = FACTORY.date_time()
    is_superuser = False
    is_staff = False
    is_active = FACTORY.pybool()
    password = PreSave(set_password, password="test1234")
    group = PostSave(add_to_group, name="Test group")

    class Meta:
        model = User
        get_or_create = ("username",)

    @trait
    def is_admin_user(self, instance: User) -> None:
        """Trait."""
        instance.is_superuser = True
        instance.is_staff = True
        instance.is_active = True

And this is how you could use it:

# Create just one user
user = UserFactory()

# Create 5 users
users = UserFactory.create_batch(5)

# Create a user using `is_admin_user` trait
user = UserFactory(is_admin_user=True)

# Create a user with custom password
user = UserFactory(
    password=PreSave(set_password, password="another-password"),
)

# Add a user to another group
user = UserFactory(
    group=PostSave(add_to_group, name="Another group"),
)

# Or even add user to multiple groups at once
user = UserFactory(
    group_1=PostSave(add_to_group, name="Another group"),
    group_2=PostSave(add_to_group, name="Yet another group"),
)

Customize

Make your own custom providers and utilize factories with them.

Filename: custom_fake.py

import random
import string

from fake import Faker, Factory, provider


class CustomFaker(Faker):

    @provider
    def postal_code(self) -> str:
        number_part = "".join(random.choices(string.digits, k=4))
        letter_part = "".join(random.choices(string.ascii_uppercase, k=2))
        return f"{number_part} {letter_part}"


FAKER = CustomFaker()
FACTORY = Factory(FAKER)

Now you can use it as follows (make sure to import your custom instances of FAKER and FACTORY):

from custom_fake import FAKER  # Custom `FAKER` instance

FAKER.postal_code()

Or as follows:

from fake import ModelFactory

from custom_fake import FACTORY  # Custom `FACTORY` instance


class AddressFactory(ModelFactory):

    # ... other definitions
    postal_code = FACTORY.postal_code()
    # ... other definitions

    class Meta:
        model = Address

Tests

Run the tests with unittest:

python -m unittest fake.py

Or pytest:

pytest

Differences with alternatives

fake.py is Faker + factory_boy + faker-file in one package, radically simplified and reduced in features, but without any external dependencies (not even Pillow or dateutil).

fake.py is modeled after the famous Faker package. Its’ API is highly compatible, although drastically reduced. It’s not multilingual and does not support postal codes or that many RAW file formats. However, you could easily include it in your production setup without worrying about yet another dependency.

On the other hand, fake.py factories look quite similar to factory_boy factories, although again - drastically simplified and reduced in features.

The file generation part of fake.py is modelled after the faker-file. You don’t get a large variety of file types supported and you don’t have that much control over the content of the files generated, but you get dependency-free valid files and if that’s all you need, you don’t need to look further.

However, at any point, if you discover that you “need more”, go for Faker, factory_boy and faker-file combination.

Writing documentation

Keep the following hierarchy.

=====
title
=====

header
======

sub-header
----------

sub-sub-header
~~~~~~~~~~~~~~

sub-sub-sub-header
^^^^^^^^^^^^^^^^^^

sub-sub-sub-sub-header
++++++++++++++++++++++

sub-sub-sub-sub-sub-header
**************************

License

MIT

Support

For security issues contact me at the e-mail given in the Author section.

For overall issues, go to GitHub.

Author

Artur Barseghyan <artur.barseghyan@gmail.com>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fake_py-0.10.2.tar.gz (163.8 kB view details)

Uploaded Source

Built Distribution

fake.py-0.10.2-py3-none-any.whl (50.6 kB view details)

Uploaded Python 3

File details

Details for the file fake_py-0.10.2.tar.gz.

File metadata

  • Download URL: fake_py-0.10.2.tar.gz
  • Upload date:
  • Size: 163.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.10

File hashes

Hashes for fake_py-0.10.2.tar.gz
Algorithm Hash digest
SHA256 1ce47c0453a9446186a87258695c025c8e7c78d4a5bef3da4383df4cdede2f26
MD5 a427bf465604bfd313a9c86504132b44
BLAKE2b-256 25c77ea88ca9972560a4760329d9b4d3f33c77e745f5f9ad20c8ba78897ebc57

See more details on using hashes here.

File details

Details for the file fake.py-0.10.2-py3-none-any.whl.

File metadata

  • Download URL: fake.py-0.10.2-py3-none-any.whl
  • Upload date:
  • Size: 50.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.10

File hashes

Hashes for fake.py-0.10.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a81e97242f28a90b4c5fc96c9833ae9c8c3d3ca9f8eff7a9f0bb9a9851c3680b
MD5 b78cae274032bbd89a5e24543eeddbcb
BLAKE2b-256 a63d78c0d8df7e675ad0f478cf45d30cf41401c41bb6f8b5b262acad09cac18c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page