Skip to main content

A minimal version of fastai with only what's needed for the training loop

Project description

fastai_minima

A mimal version of fastai with the barebones needed to work with Pytorch

Install

pip install fastai_minima

How to use

This library is designed to bring in only the minimal needed from fastai to work with raw Pytorch. This includes:

  • Learner
  • Callbacks
  • Optimizer
  • DataLoaders (but not the DataBlock)
  • Metrics

Below we can find a very minimal example based off my Pytorch to fastai, Bridging the Gap article:

import torch
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])

dset_train = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)

dset_test = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)

trainloader = torch.utils.data.DataLoader(dset_train, batch_size=4,
                                          shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(dset_test, batch_size=4,
                                         shuffle=False, num_workers=2)
Files already downloaded and verified
Files already downloaded and verified
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
criterion = nn.CrossEntropyLoss()
from torch import optim
from fastai_minima.optimizer import OptimWrapper
from fastai_minima.learner import Learner, DataLoaders
from fastai_minima.callback.training import CudaCallback, ProgressCallback
def opt_func(params, **kwargs): return OptimWrapper(optim.SGD(params, **kwargs))

dls = DataLoaders(trainloader, testloader)
learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func)

# To use the GPU, do 
# learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func, cbs=[CudaCallback()])
learn.fit(2, lr=0.001)
epoch train_loss valid_loss time
0 2.269467 2.266472 01:20
1 1.876898 1.879593 01:21
/mnt/d/lib/python3.7/site-packages/torch/autograd/__init__.py:132: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at  /pytorch/c10/cuda/CUDAFunctions.cpp:100.)
  allow_unreachable=True)  # allow_unreachable flag

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastai_minima-0.0.1.tar.gz (30.5 kB view details)

Uploaded Source

Built Distribution

fastai_minima-0.0.1-py3-none-any.whl (27.7 kB view details)

Uploaded Python 3

File details

Details for the file fastai_minima-0.0.1.tar.gz.

File metadata

  • Download URL: fastai_minima-0.0.1.tar.gz
  • Upload date:
  • Size: 30.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.0

File hashes

Hashes for fastai_minima-0.0.1.tar.gz
Algorithm Hash digest
SHA256 b46b4c1c5e1d21d9d9a32eb8e3a9169c6aff17e27547848e19e3355aa23d3e22
MD5 ffcebc4cda51d03b03734f9af2571d80
BLAKE2b-256 61399cd202a5b8cf7c1dfeb9830a96ae9fbc3e22ba5681f792741d9208832b1e

See more details on using hashes here.

File details

Details for the file fastai_minima-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: fastai_minima-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 27.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.0

File hashes

Hashes for fastai_minima-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f534734563d1ada241ea340d6171355fabb6c6e10cc566497160f04c02355b3e
MD5 d14518248ad669789311a8b3122b59cc
BLAKE2b-256 b49c47ed23feb05f654eed86f4542f19eae4b3a5c6a6ee2295cbd3f0dcbd3288

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page