Skip to main content

A minimal version of fastai with only what's needed for the training loop

Project description

fastai_minima

A mimal version of fastai with the barebones needed to work with Pytorch

#all_slow

Install

pip install fastai_minima

How to use

This library is designed to bring in only the minimal needed from fastai to work with raw Pytorch. This includes:

  • Learner
  • Callbacks
  • Optimizer
  • DataLoaders (but not the DataBlock)
  • Metrics

Below we can find a very minimal example based off my Pytorch to fastai, Bridging the Gap article:

import torch
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])

dset_train = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)

dset_test = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)

trainloader = torch.utils.data.DataLoader(dset_train, batch_size=4,
                                          shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(dset_test, batch_size=4,
                                         shuffle=False, num_workers=2)
Files already downloaded and verified
Files already downloaded and verified
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
criterion = nn.CrossEntropyLoss()
from torch import optim
from fastai_minima.optimizer import OptimWrapper
from fastai_minima.learner import Learner, DataLoaders
from fastai_minima.callback.training import CudaCallback, ProgressCallback
def opt_func(params, **kwargs): return OptimWrapper(optim.SGD(params, **kwargs))

dls = DataLoaders(trainloader, testloader)
learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func)

# To use the GPU, do 
# learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func, cbs=[CudaCallback()])
learn.fit(2, lr=0.001)
epoch train_loss valid_loss time
0 2.269467 2.266472 01:20
1 1.876898 1.879593 01:21
/mnt/d/lib/python3.7/site-packages/torch/autograd/__init__.py:132: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at  /pytorch/c10/cuda/CUDAFunctions.cpp:100.)
  allow_unreachable=True)  # allow_unreachable flag

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastai_minima-0.0.2.tar.gz (30.0 kB view details)

Uploaded Source

Built Distribution

fastai_minima-0.0.2-py3-none-any.whl (27.2 kB view details)

Uploaded Python 3

File details

Details for the file fastai_minima-0.0.2.tar.gz.

File metadata

  • Download URL: fastai_minima-0.0.2.tar.gz
  • Upload date:
  • Size: 30.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.0

File hashes

Hashes for fastai_minima-0.0.2.tar.gz
Algorithm Hash digest
SHA256 76b1a5b9cc674b4729f0e5abca269174872964369080dfbbd76377385c981245
MD5 45eace9f3980c187f434e8dc9b0fd585
BLAKE2b-256 0c76088a43d840c5607ef93bdb7fe0f6ac15bcb3fdeb33a00963727d9bf64755

See more details on using hashes here.

File details

Details for the file fastai_minima-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: fastai_minima-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 27.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.0

File hashes

Hashes for fastai_minima-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 c5e6fbcc5a3af6584c31c6742f30715d5453bb38862499d7c86a5ed302a48228
MD5 4fe1746fa79bc4fd3214d715ff8f4776
BLAKE2b-256 e9ba4e4d0e939c906b511d0045e85d3c0dd30f2ddfdb8dc62b8ec5cbe68d417b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page