Skip to main content

A library that improves the debugging messages for Pytorch and fastai

Project description

fastdebug

A helpful library for improving torch and fastai errors

Install

pip install fastdebug

How to use

fastdebug is designed around improving the quality of life when dealing with Pytorch and fastai errors, while also including some new sanity checks (fastai only)

Pytorch

Pytorch now has:

  • device_error
  • layer_error

Both can be imported with:

from fastdebug.error.torch import device_error, layer_error

device_error prints out a much more readable error for when two tensors aren't on the same device:

inp = torch.rand().cuda()
model = model.cpu()
try:
    _ = model(inp)
except Exception as e:
    device_error(e, 'Input type', 'Model weights')

And our new log:

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-28-981e0ace9c38> in <module>()
      2     model(x)
      3 except Exception as e:
----> 4     device_error(e, 'Input type', 'Model weights')

10 frames
/usr/local/lib/python3.7/dist-packages/torch/tensor.py in __torch_function__(cls, func, types, args, kwargs)
    993 
    994         with _C.DisableTorchFunction():
--> 995             ret = func(*args, **kwargs)
    996             return _convert(ret, cls)
    997 

RuntimeError: Mismatch between weight types

Input type has type: 		 (torch.cuda.FloatTensor)
Model weights have type: 	 (torch.FloatTensor)

Both should be the same.

And with layer_error, if there is a shape mismatch it will attempt to find the right layer it was at:

inp = torch.rand(5,2, 3)
try:
    m(inp)
except Exception as e:
    layer_error(e, m)
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-84-d4ab91131841> in <module>()
      3     m(inp)
      4 except Exception as e:
----> 5     layer_error(e, m)

<ipython-input-83-ca2dc02cfff4> in layer_error(e, model)
      8     i, layer = get_layer_by_shape(model, shape)
      9     e.args = [f'Size mismatch between input tensors and what the model expects\n\n{args}\n\tat layer {i}: {layer}']
---> 10     raise e

<ipython-input-84-d4ab91131841> in <module>()
      1 inp = torch.rand(5,2, 3)
      2 try:
----> 3     m(inp)
      4 except Exception as e:
      5     layer_error(e, m)

/mnt/d/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

/mnt/d/lib/python3.7/site-packages/torch/nn/modules/container.py in forward(self, input)
    115     def forward(self, input):
    116         for module in self:
--> 117             input = module(input)
    118         return input
    119 

/mnt/d/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
    725             result = self._slow_forward(*input, **kwargs)
    726         else:
--> 727             result = self.forward(*input, **kwargs)
    728         for hook in itertools.chain(
    729                 _global_forward_hooks.values(),

/mnt/d/lib/python3.7/site-packages/torch/nn/modules/conv.py in forward(self, input)
    421 
    422     def forward(self, input: Tensor) -> Tensor:
--> 423         return self._conv_forward(input, self.weight)
    424 
    425 class Conv3d(_ConvNd):

/mnt/d/lib/python3.7/site-packages/torch/nn/modules/conv.py in _conv_forward(self, input, weight)
    418                             _pair(0), self.dilation, self.groups)
    419         return F.conv2d(input, weight, self.bias, self.stride,
--> 420                         self.padding, self.dilation, self.groups)
    421 
    422     def forward(self, input: Tensor) -> Tensor:

RuntimeError: Size mismatch between input tensors and what the model expects

Model expected 4-dimensional input for 4-dimensional weight [3, 3, 1, 1], but got 3-dimensional input of size [5, 2, 3] instead
	at layer 1: Conv2d(3, 3, kernel_size=(1, 1), stride=(1, 1))

fastai

Along with the additions above (and are used during fit), fastai now has a Learner.sanity_check function, which allows you to quickly perform a basic check to ensure that your call to fit won't raise any exceptions. They are performed on the CPU for a partial epoch to make sure that CUDA device-assist errors can be preemptively found.

To use it simply do:

from fastdebug.fastai import *
from fastai.vision.all import *

learn = Learner(...)
learn.sanity_check()

This is also now an argument in Learner, set to False by default, so that after making your Learner a quick check is ensured.

learn = Learner(..., sanity_check=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastdebug-0.0.5.tar.gz (16.2 kB view details)

Uploaded Source

Built Distribution

fastdebug-0.0.5-py3-none-any.whl (14.6 kB view details)

Uploaded Python 3

File details

Details for the file fastdebug-0.0.5.tar.gz.

File metadata

  • Download URL: fastdebug-0.0.5.tar.gz
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.0

File hashes

Hashes for fastdebug-0.0.5.tar.gz
Algorithm Hash digest
SHA256 cf511d045b7690e5aa6d2147f33735de761fc2018657ddf3febcb8508a0b66b5
MD5 1bd2725a11cbf3e7067ca3f66fac9a61
BLAKE2b-256 37d8d1f9704fd49fd53e1209b8fc6055dc4a10221444f823a6ddb4c57c473271

See more details on using hashes here.

File details

Details for the file fastdebug-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: fastdebug-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 14.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/40.2.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.0

File hashes

Hashes for fastdebug-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 7aed2230e8e04e00497907f2fae50909e991f18725c7f7a878103265c18072ec
MD5 897aa4b757315df24213ea6284dfd38b
BLAKE2b-256 c37b56c0d12e664cd272964e159f4d24bdf719e1f81964507373c8c9fd00cd05

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page