Skip to main content

Python support for Parquet file format

Project description

https://github.com/dask/fastparquet/actions/workflows/main.yaml/badge.svg https://readthedocs.org/projects/fastparquet/badge/?version=latest

fastparquet is a python implementation of the parquet format, aiming integrate into python-based big data work-flows. It is used implicitly by the projects Dask, Pandas and intake-parquet.

We offer a high degree of support for the features of the parquet format, and very competitive performance, in a small install size and codebase.

Details of this project, how to use it and comparisons to other work can be found in the documentation.

Requirements

(all development is against recent versions in the default anaconda channels and/or conda-forge)

Required:

  • numpy

  • pandas

  • cython >= 0.29.23 (if building from pyx files)

  • cramjam

  • fsspec

Supported compression algorithms:

  • Available by default:

    • gzip

    • snappy

    • brotli

    • lz4

    • zstandard

  • Optionally supported

Installation

Install using conda, to get the latest compiled version:

conda install -c conda-forge fastparquet

or install from PyPI:

pip install fastparquet

You may wish to install numpy first, to help pip’s resolver. This may install an appropriate wheel, or compile from source. For the latter, you will need a suitable C compiler toolchain on your system.

You can also install latest version from github:

pip install git+https://github.com/dask/fastparquet

in which case you should also have cython to be able to rebuild the C files.

Usage

Please refer to the documentation.

Reading

from fastparquet import ParquetFile
pf = ParquetFile('myfile.parq')
df = pf.to_pandas()
df2 = pf.to_pandas(['col1', 'col2'], categories=['col1'])

You may specify which columns to load, which of those to keep as categoricals (if the data uses dictionary encoding). The file-path can be a single file, a metadata file pointing to other data files, or a directory (tree) containing data files. The latter is what is typically output by hive/spark.

Writing

from fastparquet import write
write('outfile.parq', df)
write('outfile2.parq', df, row_group_offsets=[0, 10000, 20000],
      compression='GZIP', file_scheme='hive')

The default is to produce a single output file with a single row-group (i.e., logical segment) and no compression. At the moment, only simple data-types and plain encoding are supported, so expect performance to be similar to numpy.savez.

History

This project forked in October 2016 from parquet-python, which was not designed for vectorised loading of big data or parallel access.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastparquet-0.8.1.tar.gz (395.5 kB view details)

Uploaded Source

Built Distributions

fastparquet-0.8.1-cp310-cp310-win_amd64.whl (609.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastparquet-0.8.1-cp310-cp310-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastparquet-0.8.1-cp310-cp310-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastparquet-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastparquet-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastparquet-0.8.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-0.8.1-cp310-cp310-macosx_11_0_arm64.whl (569.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastparquet-0.8.1-cp310-cp310-macosx_10_9_universal2.whl (776.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-0.8.1-cp39-cp39-win_amd64.whl (608.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastparquet-0.8.1-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastparquet-0.8.1-cp39-cp39-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastparquet-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastparquet-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastparquet-0.8.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-0.8.1-cp39-cp39-macosx_11_0_arm64.whl (567.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastparquet-0.8.1-cp39-cp39-macosx_10_9_universal2.whl (775.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-0.8.1-cp38-cp38-win_amd64.whl (617.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastparquet-0.8.1-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastparquet-0.8.1-cp38-cp38-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastparquet-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastparquet-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastparquet-0.8.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-0.8.1-cp38-cp38-macosx_11_0_arm64.whl (573.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastparquet-0.8.1-cp38-cp38-macosx_10_9_universal2.whl (776.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-0.8.1-cp37-cp37m-win_amd64.whl (611.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

fastparquet-0.8.1-cp37-cp37m-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fastparquet-0.8.1-cp37-cp37m-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

fastparquet-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fastparquet-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

fastparquet-0.8.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl (603.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fastparquet-0.8.1.tar.gz.

File metadata

  • Download URL: fastparquet-0.8.1.tar.gz
  • Upload date:
  • Size: 395.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1.tar.gz
Algorithm Hash digest
SHA256 8dea4019863dc815627de009131c76185bbf3d76fafa82d96e9df23a7a1718c3
MD5 0186a6d4a61701e6d3b76f3d15346ea3
BLAKE2b-256 a319ef2b612aa6fdadcc4b9d19b69011ae5bf5855cb142e3cf1c2b12c32bd76e

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 609.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dc8a1b901954935e8d8b12591e6e4fa776359789f453613ca2bbe33ad51c75f6
MD5 0898b474d7c6c3091ee9ea3c4f58031c
BLAKE2b-256 3e13973eaf67d1619ddc2f97199fb0bf522626c61f03efc33679c3bd0e2c1364

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2b0155cbfa3099025c2ee1d601bd9a86efabd460acc98a639bde7ed449c75869
MD5 88f05bb4e29103be17d962be4ef3da32
BLAKE2b-256 429e58e5d73abaee1d0d4327bf65dbda38340e18700a9e3d05dcff7522b55a3d

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9ba4c5f719c1285b7874cbbce522a9466cd127c056502787ab8effadbd749227
MD5 6e5c13d903088ca85eb968e6b975fa86
BLAKE2b-256 f876a094258f7fd2c914294ad4e54b82a666917685bfa3f721bb1bc2621c038e

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8421ed45fb41a84d7fee2d3646d06e5e3de3bec96f49a20d1898ed7ce9034876
MD5 4d88ba9c5d9aaff1cd7c5a1f127397e7
BLAKE2b-256 cf8ce21d7db349b6e7634674a3005c51ed72517bdfc66120b319544e73c63abf

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c15ea0010da93deeb6774e0361f364b2e4fb8a1c115f9974ba399991b8c8a40
MD5 c1a523cbef1a48a1a9f11ddcf909b6f7
BLAKE2b-256 3489b06798c107ea796049c09c908211d39014045bd6b1f2c9af6d4b6fe0fb90

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f33c88dfb0b25e569374c7fb2e8118b0ae31d6083475378dec2a6064eb850be2
MD5 c3aa0817fe0fa4c69e034fe756af168b
BLAKE2b-256 7a8fbbeb31d55a41f98bad70ca8611f7b159c1f6e1670582d3a22e290e40279d

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 569.0 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c3b35ad9cb0c8988eb92b083791234e444b5912e6179e578cc293705bb6df43
MD5 c9823328ee94b4f70df1c911345c9bef
BLAKE2b-256 adc88e47d12788f731cebed6e4a506afb57815077336de898440b418582fbd21

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 776.9 kB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fa9fcfdfe81093c8ec03ae8d132e04bcb25521e7e2ebb111416cb941b53f00de
MD5 45ddb788a7e8e6d8ff93c0ad540d02ca
BLAKE2b-256 ee45dc6817bf35876792968378ec9965bd4e66aa6baec2abd7537994b2b64b30

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 608.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bd692dc32931863709b7c2041e0c7cd98c3de25070acd194e6246ecb09151884
MD5 b96e74f18757801a6d654081a2e22a99
BLAKE2b-256 672c5c724f127e13210751996f42801c396e08e37f91aabb8b765e607b61b36c

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dcd32d79f591eb3c133ee8d1a868189e90cd5562ed836e4b7b3f02e9f37c847b
MD5 9e5f0502d62a425aabd0dcc77021fb79
BLAKE2b-256 9af8e6fb75703f010d21a4ab9759d5516115e1149a59db0f443cd0c5ee695955

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5b0e3f49298f3bcc032a31038a16ce1e418c96c02ca067f970b7522ba8e88aa2
MD5 3b9b3ca0106d6fdb427f914976e301de
BLAKE2b-256 135e806e1b560d28efd8e76c3807ade1083a8c6fc469e8cdb408edc68aaad0a0

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f01ac6f31e19618be4f89a6f6c8239bb2329046b5017d37529ff3dcb0901ff77
MD5 08e5cae2b7d3911834e93190293adb34
BLAKE2b-256 0a957aa1892f7262bd8d26108745b1e48ae402f08dd54f055f17bbcb31e0aae2

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2385617708f84ef65ff1091de08ae2911b15983353ce132fda74eaca1976ec0a
MD5 0663a636073011743cf14308fc860dfb
BLAKE2b-256 66968215606f170f18fdbc50eb2d8ef7f1a87a36aaafa034dcdc98e804e0b80d

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4aec48ef8d28c8642684706b1918ef7f26aafaea60b63c15daed73987a5a669f
MD5 58f37805d215b4cbeb0c3f1809e6a731
BLAKE2b-256 893a1e03cfba3b9e2bcb50f40d7d7893ea7303db278442e96e24277f080a0085

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 567.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0ea7d4e8b945c0dbe2cc161ad966fc75296ce8921d0456b4ae96cb60ed646612
MD5 927ebef5a11cee29195d24b05c17192d
BLAKE2b-256 ed7990d5ff864fc48ef91a2ca7a7bac2a6bf9ec26315e0715ec0ba3b0cc11852

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 775.1 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5af3876a10035cd3a0470aa310df2ee170d58c32b52a66f1abd2ea6f8b2b42cc
MD5 bac2e59f08c3e31b0ee3cdc563ce54a5
BLAKE2b-256 ec36562f3b9a83b17b1f8d0a3877d62433f445716d6228cdfe197e8fb27b6c30

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 617.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 edc530fb33b9de6973408871acb8b8c34efa27992f3a430127d3ae4866fccd5f
MD5 452fc38e72d8a138259b43c2dc39421e
BLAKE2b-256 2da76696d1445f41a27a211561d1260a1d4ca51effd01a9813d056cd9d61a809

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9dd054343c4165c1527785daa870e7b5cb50559c7bf2685b49ee6edf8e120228
MD5 3273d15748aca6983c34172715c04f42
BLAKE2b-256 54c40b860339db1049d8fa7bb8fc72c1a1dd10fb3eb2c64cd938e44510dd8631

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d32b59b97fbb6e27e35b3ebfe75a8795bb06cf08d1d27f63647c52ccb65176ec
MD5 38f1e15bcd589f69d8ab982b6eb38bd7
BLAKE2b-256 f2228abbf9256c0f0137482f473d56a164c826effa25aca3214e99351ac68263

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea93f3ff4448c1072977560676cf732e6b1dd3d5d4e53ebf4e607ae67b064097
MD5 0fb4e5b398472c6bd189c2b5bfff621b
BLAKE2b-256 143860ba8bae736e7e59cd1311f54b3e7988af0a5705e425294c62c628d8aa0d

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a80c269ff9774b6b2855c2b3a5c313e813d50222069856a3179c60b6a4bf426f
MD5 6f64fd639478e46441c0a9106fb3b2c2
BLAKE2b-256 bed199b0c28397589f46b9b501ae87a006072808503dc1296fc48f824910ef32

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 225e57d174bc3863b35b9276b46eba643497ce89c9dad87677f1e25498118815
MD5 797e67c314e38d2efadc8ace5a41ed5b
BLAKE2b-256 6c347a73d576c9df430ee74ac5d565a4c8036de4048468db3bbff2165f9472d1

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 573.1 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 31d037a33422aaf6330944d8cb44d7d3361487b7b6a82e6fded42a428f61dd15
MD5 27364857016995369dfb40b3ca9f8d91
BLAKE2b-256 f310f5677fc8536877be1e66c19a8e87700209a69a0d4d1c7eeeabbb8afb709c

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 776.0 kB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e3eb5f0a26accfdcf3cd2f6904886bb19272bc3c74589ca3d3b6100446ff8ec9
MD5 8532c746db7dc6b3ddcf08f1c8c9adb3
BLAKE2b-256 a4405e3b12b61ebc125d8d62681a63437c2a379d00d6bfc66e137741a0d6e000

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 611.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 43f844bc13abb9f8807d843b0a313df93dedbdb88f3ac4528875e8182199d089
MD5 97723c35b98d7dec7414bb14ecddc549
BLAKE2b-256 2113caf9b6d339c0eac11575a3c8f3524ea429417e205b7df1555276928cafa8

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 268980b441982d540a487dfead556e990e372d6987e5f36b350cf1fc504b8ca9
MD5 99cb7fb7d2b6df5c262511f62f336a42
BLAKE2b-256 b8e02b2e65da1c370c477f1545d8946c2a51b6d9de71295257721d8c9fc013b0

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastparquet-0.8.1-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for fastparquet-0.8.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f55fd0aac88c78d6b269265d7b10e9e866f58dc6fa849b15d33e738f493945aa
MD5 c224d32a2c61b37cdcb68bfa952fd788
BLAKE2b-256 a33a492f9437af53ee53f6dbc2b41af3319905b1426e3212bd5257d5d42356f5

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9045f255f3dcfd2c3b044dc5f4caaf849ed7fe59b45fd0ee95d1aeeca8ca65b
MD5 0ccb975f41a435268952840d8e7f787b
BLAKE2b-256 f8520a366a638b0203bc55c7698aa85d605ff11bc7d9af3f319023bd12275a44

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1e57041edb9a691c37cdb2cd65075dc7e2ce6eb4ed589ae9c8b585329de5c9a9
MD5 c2acd9b31dc0ded3afa435be48575ddd
BLAKE2b-256 19668e22262a253f68769ea025a35e3487d62bc0b4083989c816cdf4f62f3820

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a32d6422d6b185d372763756b99a8ffaf4ee09b98b9f859cacf825d9a93019a7
MD5 7a5dd62f21eb5c79f729c93e3ceca686
BLAKE2b-256 44e48872c2d0703023ccf5feade03a9d65b7733e150dcde50565189c4ae658fb

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9da0068cd780cc2bf7c1302a31623b9811c09f57e09b06256e65638c38b1b390
MD5 798877873bf19c59c120c1550ad078bd
BLAKE2b-256 9b26686b6799bda306c5764975658f03c19924def974cfec40017ec74a9f0047

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page