Skip to main content

Python support for Parquet file format

Project description

https://github.com/dask/fastparquet/actions/workflows/main.yaml/badge.svg https://readthedocs.org/projects/fastparquet/badge/?version=latest

fastparquet is a python implementation of the parquet format, aiming integrate into python-based big data work-flows. It is used implicitly by the projects Dask, Pandas and intake-parquet.

We offer a high degree of support for the features of the parquet format, and very competitive performance, in a small install size and codebase.

Details of this project, how to use it and comparisons to other work can be found in the documentation.

Requirements

(all development is against recent versions in the default anaconda channels and/or conda-forge)

Required:

  • numpy

  • pandas

  • cython >= 0.29.23 (if building from pyx files)

  • cramjam

  • fsspec

Supported compression algorithms:

  • Available by default:

    • gzip

    • snappy

    • brotli

    • lz4

    • zstandard

  • Optionally supported

Installation

Install using conda, to get the latest compiled version:

conda install -c conda-forge fastparquet

or install from PyPI:

pip install fastparquet

You may wish to install numpy first, to help pip’s resolver. This may install an appropriate wheel, or compile from source. For the latter, you will need a suitable C compiler toolchain on your system.

You can also install latest version from github:

pip install git+https://github.com/dask/fastparquet

in which case you should also have cython to be able to rebuild the C files.

Usage

Please refer to the documentation.

Reading

from fastparquet import ParquetFile
pf = ParquetFile('myfile.parq')
df = pf.to_pandas()
df2 = pf.to_pandas(['col1', 'col2'], categories=['col1'])

You may specify which columns to load, which of those to keep as categoricals (if the data uses dictionary encoding). The file-path can be a single file, a metadata file pointing to other data files, or a directory (tree) containing data files. The latter is what is typically output by hive/spark.

Writing

from fastparquet import write
write('outfile.parq', df)
write('outfile2.parq', df, row_group_offsets=[0, 10000, 20000],
      compression='GZIP', file_scheme='hive')

The default is to produce a single output file with a single row-group (i.e., logical segment) and no compression. At the moment, only simple data-types and plain encoding are supported, so expect performance to be similar to numpy.savez.

History

This project forked in October 2016 from parquet-python, which was not designed for vectorised loading of big data or parallel access.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastparquet-0.8.2.tar.gz (392.9 kB view details)

Uploaded Source

Built Distributions

fastparquet-0.8.2-cp310-cp310-win_amd64.whl (603.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastparquet-0.8.2-cp310-cp310-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastparquet-0.8.2-cp310-cp310-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastparquet-0.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastparquet-0.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastparquet-0.8.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-0.8.2-cp310-cp310-macosx_11_0_arm64.whl (567.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastparquet-0.8.2-cp310-cp310-macosx_10_9_universal2.whl (775.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-0.8.2-cp39-cp39-win_amd64.whl (605.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastparquet-0.8.2-cp39-cp39-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastparquet-0.8.2-cp39-cp39-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastparquet-0.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastparquet-0.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastparquet-0.8.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-0.8.2-cp39-cp39-macosx_11_0_arm64.whl (568.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastparquet-0.8.2-cp39-cp39-macosx_10_9_universal2.whl (777.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-0.8.2-cp38-cp38-win_amd64.whl (615.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastparquet-0.8.2-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastparquet-0.8.2-cp38-cp38-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastparquet-0.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastparquet-0.8.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastparquet-0.8.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-0.8.2-cp38-cp38-macosx_11_0_arm64.whl (573.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastparquet-0.8.2-cp38-cp38-macosx_10_9_x86_64.whl (602.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fastparquet-0.8.2-cp38-cp38-macosx_10_9_universal2.whl (778.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file fastparquet-0.8.2.tar.gz.

File metadata

  • Download URL: fastparquet-0.8.2.tar.gz
  • Upload date:
  • Size: 392.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2.tar.gz
Algorithm Hash digest
SHA256 7f54bb4718b6b360d8c864060b9bab88fd675709d5f3d8bae335aece9cb7fd53
MD5 fe9af13e80b67e6965df59c707561da8
BLAKE2b-256 9e8aff95b6d25c7e94dde65e5d4b3818248dd4b23bbdd8a5c98600bd3e4cfccb

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 603.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4881a62d07f100db23b8de068478a8cad8d79e4f5b5a2480bb5380a1e2d1d2a7
MD5 97f7c082652430c576fc0ffa20f46c5b
BLAKE2b-256 b6392c4b176c60d6eb0e1e9753cb9e61f43333bff18d6b70a8c89803be472818

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b5bb062e360e4f39b0e6c3b08c2e9575d0a94175c3248bd86ccf633a70b44a22
MD5 64a711688126bbf0a54facf80c9bbd9f
BLAKE2b-256 b6f9102450f3200123d5471a730e5c476ebfe2ac1d93ca02d2e5e2a0eb9f570f

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 510d1992edd2570e538dad2a664c4914b6ee52a19ca1b8a05bc964465271948c
MD5 8b2a89f1755791fc85213f506cf67532
BLAKE2b-256 2ade56c0fb4985dbc5779fa539113671160a85ca208f7d0d877c90f246e21fbf

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8fbb7ef867d36bd2721a7c8ada1acecc9fa2bd0366e12676b8789340dd09b29d
MD5 ab1389e325016babec5ff68207e88c19
BLAKE2b-256 ac4a8006323253ec263f754b359586973ada3d01f9f0cfae46cf7e8caf73bc95

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 02dc45a6cb3f2eec16e64f6d2dd6fa1805503753ffb45eef1a787ffa735eee26
MD5 b24ab75578458fe01db3cd5f2e4e2d24
BLAKE2b-256 c232380e0decd8277b647a1e1a3c64c235da5723848d221468b14d11d948d744

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7f5b7a4a863a96478632d1f2abc2370164c1b5cc354b4ecd487e5bb8b9f27410
MD5 8d55649dd00f8a55d017dab571fa0ed9
BLAKE2b-256 eeb9332561bcaf31067ccc65400d6fb8d96292861a0a56f566a47331d63a7774

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 567.6 kB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d640b61086d37a4e4a87842c37016eb3609314ed08c75542eac21717b571c6e5
MD5 c88dd01660c3256e1b0b40a94c01999c
BLAKE2b-256 48bb511ba8d9a6873c83b3596a6351dbd697fa8375680a6125a91b914f3f0f0b

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 775.1 kB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 db7948614f31b91dd84fb50690cfc9063706277e7872c95971defb21a5a03665
MD5 c211b296ba19952d390f29ef83595ed8
BLAKE2b-256 83d86930d3acddcf95acb32a0f982f6696bc59bc812a098fc76efbd642ab5371

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 605.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f66499b06f1fda18052355c5a089f7dc2541f256424caee3c609d5b7ad140ca4
MD5 bf6bf00327da19c85639318e6abae9a9
BLAKE2b-256 8a6d43b6f70a6e64a5c663a86fdd58c74ce3e7e2e89761f509852c2ee378e909

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8cf2d0ab56ab8fb34ca7e1845693df3402da3226e736d64737aab5e0d29e910a
MD5 64789246f6738abbad86269994558368
BLAKE2b-256 da982df585f9f1fe2ba7653680983cc934c33ba862b4d9bf12c38ccb65d826ea

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c2cbb51d4e20453d8e4f0001d382ad7e389023d91b1f2d5f78c3a1dfb5437715
MD5 6bf328e8d3352062cd05d247d6e5330e
BLAKE2b-256 7ce8b1e1c33477c25d9dcaaaffe8c2503e39a93911abfb8dc13e8a247aa6336c

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79841acb0d6ef4e58f597d04a6a73161f51d31f28e8540b67f8f4162978a9cb3
MD5 83a9ccbf335a757fef1a6b771d8049c1
BLAKE2b-256 715a5cfeaf2a7b9f0b7c80b6d335f7c13efeab461bc6e08c15266e7a0068fca3

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb547d226a0c4c990447c1574b196aefb9f66acc91fea16e027682a11c0ec91b
MD5 fa5de5bf749eba792ad542ccf9926a5f
BLAKE2b-256 1ebc20cf2c3a44ad91048260e886af675fa3bbc66ba925332334e6452a2da522

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3638595fc4671cf2dfa8434c530fb34f5f2c13873fe510277005d03f32f66ab6
MD5 091f5c3efab17ed1733d2c966f8bc189
BLAKE2b-256 1563d22e2053421533b5b5b0c918f8404647e1195835f931e0e732e2c581439b

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 568.1 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 57d1c519c1711300fd0294f051b94d803762783407c8e7875bf30fb318a1400d
MD5 fcdfa5ad592909489671dc186d10407d
BLAKE2b-256 a342cf7f964d6de160783541b2d445297576395263a937c3e43d793c367422ce

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 777.2 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c9f9c628cebcd9617392e9d27046d306cf322880119617191e400d3d8a760e77
MD5 df4742ae7616788aa4d35fb84908dabe
BLAKE2b-256 876fc123c97c4ae1bf44c28ecc98ce50535dbad8423c9b121f6e0481b6b0a255

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 615.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e4795811999489963e6af662678526e36d47edef3120f335ae3174755b5cd455
MD5 0cf11dfc2be64ff452e0302f93833069
BLAKE2b-256 2594400d5a1e5e529b9e55527eba2d3eef056488790c921871490bd2225ee553

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 62f2bcf1259b5496a09eb437ef22133f4859429e133a3bbd44b7634814a0d48a
MD5 f085eea2d4c787109da6cf8c71e10dfe
BLAKE2b-256 04ddc26c319d47aac7319170a6a55f9cb998fbadb7d6d85ea03f4039e2b9e6e6

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e700cc2768785e36d1469dc604bec0f60d55f25855b08254d4efcde81e8e57a6
MD5 5fcf5a08906d035c16388e5cc37e492b
BLAKE2b-256 9c1bf8c723b4a4ccd8d1a16a186e22f3f281019c93d36366ea51a907f848942a

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab1eb32219764e37efef3903444fe20899f988fd54577e6c81ee5a7b11642516
MD5 8d3373fdf4f28789810bbd046c85330a
BLAKE2b-256 1fd7e02606600513f1a9c1ff9fe2af0e055c3d700cf65f6de578298c9e40cbae

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c479f4cb40ff588b465bb9d7b8a09d582952fb5d57949b3435b23e0ecea7464c
MD5 bb3a04eccedc5e87be567367425ae069
BLAKE2b-256 b1af64a7d2362b58cd74ebc43420becebb13d11b3f20a5d0d896ae64cee03261

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-0.8.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4e1f27c2a2f9fc60b9736997158d614ac841a70f971b82a6c0a1dcbb6ff6a93d
MD5 07bb62a1fcc79a2ebb0267be93305c56
BLAKE2b-256 4dc1700341f853d07d88ffd6fb3bcf630377665c401e18965ffc8efd61fdd461

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 573.3 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33b92dd866d1769464b642560e5497473c4af173d925ba2572b62f57951211d5
MD5 2b4feef8cd9318d1a3e008f8f8cec147
BLAKE2b-256 426093d04b9894475fc95f8451bf7b5158c63398460c6b5bbad8592ebd661447

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 602.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d73b75acb78ac1bc45702467894ea6f367fa84cd2702aa0b3bfd62f74ca02f38
MD5 fbdffe0b5d425f75b71c936e97b76715
BLAKE2b-256 6adb8bea77c9612f56601457efba7f491c1178a9336c4cc33c171a5af3b5702e

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-0.8.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: fastparquet-0.8.2-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 778.3 kB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.12

File hashes

Hashes for fastparquet-0.8.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 884738dfe26389d05e2e43996b145d0f075210efa2350ac9cdf73b1d8e316056
MD5 d24315ea20eb569a7bec609ddb7d480c
BLAKE2b-256 f945df0db22d52ff09991564a2378eca2473c62819b8fa17d0d32b3749750e43

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page