Skip to main content

Python support for Parquet file format

Project description

https://github.com/dask/fastparquet/actions/workflows/main.yaml/badge.svg https://readthedocs.org/projects/fastparquet/badge/?version=latest

fastparquet is a python implementation of the parquet format, aiming integrate into python-based big data work-flows. It is used implicitly by the projects Dask, Pandas and intake-parquet.

We offer a high degree of support for the features of the parquet format, and very competitive performance, in a small install size and codebase.

Details of this project, how to use it and comparisons to other work can be found in the documentation.

Requirements

(all development is against recent versions in the default anaconda channels and/or conda-forge)

Required:

  • numpy

  • pandas

  • cython >= 0.29.23 (if building from pyx files)

  • cramjam

  • fsspec

Supported compression algorithms:

  • Available by default:

    • gzip

    • snappy

    • brotli

    • lz4

    • zstandard

  • Optionally supported

Installation

Install using conda, to get the latest compiled version:

conda install -c conda-forge fastparquet

or install from PyPI:

pip install fastparquet

You may wish to install numpy first, to help pip’s resolver. This may install an appropriate wheel, or compile from source. For the latter, you will need a suitable C compiler toolchain on your system.

You can also install latest version from github:

pip install git+https://github.com/dask/fastparquet

in which case you should also have cython to be able to rebuild the C files.

Usage

Please refer to the documentation.

Reading

from fastparquet import ParquetFile
pf = ParquetFile('myfile.parq')
df = pf.to_pandas()
df2 = pf.to_pandas(['col1', 'col2'], categories=['col1'])

You may specify which columns to load, which of those to keep as categoricals (if the data uses dictionary encoding). The file-path can be a single file, a metadata file pointing to other data files, or a directory (tree) containing data files. The latter is what is typically output by hive/spark.

Writing

from fastparquet import write
write('outfile.parq', df)
write('outfile2.parq', df, row_group_offsets=[0, 10000, 20000],
      compression='GZIP', file_scheme='hive')

The default is to produce a single output file with a single row-group (i.e., logical segment) and no compression. At the moment, only simple data-types and plain encoding are supported, so expect performance to be similar to numpy.savez.

History

This project forked in October 2016 from parquet-python, which was not designed for vectorised loading of big data or parallel access.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastparquet-2023.4.0.tar.gz (393.3 kB view details)

Uploaded Source

Built Distributions

fastparquet-2023.4.0-cp311-cp311-win_amd64.whl (616.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastparquet-2023.4.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fastparquet-2023.4.0-cp311-cp311-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

fastparquet-2023.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastparquet-2023.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

fastparquet-2023.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-2023.4.0-cp311-cp311-macosx_11_0_arm64.whl (579.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastparquet-2023.4.0-cp311-cp311-macosx_10_9_universal2.whl (784.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-2023.4.0-cp310-cp310-win_amd64.whl (618.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastparquet-2023.4.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastparquet-2023.4.0-cp310-cp310-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastparquet-2023.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastparquet-2023.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastparquet-2023.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-2023.4.0-cp310-cp310-macosx_11_0_arm64.whl (583.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastparquet-2023.4.0-cp310-cp310-macosx_10_9_universal2.whl (790.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-2023.4.0-cp39-cp39-win_amd64.whl (620.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastparquet-2023.4.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastparquet-2023.4.0-cp39-cp39-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastparquet-2023.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastparquet-2023.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastparquet-2023.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-2023.4.0-cp39-cp39-macosx_11_0_arm64.whl (584.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastparquet-2023.4.0-cp39-cp39-macosx_10_9_universal2.whl (793.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-2023.4.0-cp38-cp38-win_amd64.whl (630.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastparquet-2023.4.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastparquet-2023.4.0-cp38-cp38-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastparquet-2023.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastparquet-2023.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastparquet-2023.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-2023.4.0-cp38-cp38-macosx_11_0_arm64.whl (589.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastparquet-2023.4.0-cp38-cp38-macosx_10_9_universal2.whl (794.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file fastparquet-2023.4.0.tar.gz.

File metadata

  • Download URL: fastparquet-2023.4.0.tar.gz
  • Upload date:
  • Size: 393.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for fastparquet-2023.4.0.tar.gz
Algorithm Hash digest
SHA256 917e6d288ea07e10b28b5fa4b4c0b70f60b14971ece3ba5bf30690320a53aa70
MD5 120d0cd5570f0636e24392cccc9b10c1
BLAKE2b-256 2691d3e16cb907b0d23ced5358e920b70ba8e8a5ac0b8b2e96d7d876bcfbb70d

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 23b1fa7bee7943d75029663918fc08bc43aaf307f5054d37092219973ee3bc3c
MD5 6a8b368785edc1593656f564a689809d
BLAKE2b-256 c3372923a32b4a3538dcf1c2280b5d387419e7799c71141d44a5c7f8f85b5305

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1a09e8080cd81607221f22a4c6c897c50bd0d61a0ea72c57c8458343aa4e947f
MD5 def90e1d12ce0aeed5995f4335a9f511
BLAKE2b-256 bb3146a99c7b9445edf9cb1a16a6fc873d377777dad2666b48e16070d2da8a56

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 7dd47fb3c30bd186a083e5b902f72400fe2ad955897862b440f19297ba984d18
MD5 67620d4e6022d001d9366d86a20261b2
BLAKE2b-256 263c5f0ef0cf7c05f71fbb504ce796f20a5869b32725d5303114eaee29e978c0

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 043e4a11ceca32990d822a7ec53a1e839325711a31f3dc48d704326928d6179c
MD5 f2f6532c67b6703f8136682bbba74bc0
BLAKE2b-256 596c85952593b0ab57eb3a16ca0fa17bc5ae5a3afe8372a7d1c4fdce416a8631

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba1d6e804bd9a17dba721b1b26e265a31a8b8b7831a1388a9bf6f4545e938bf0
MD5 6ea0215aa8edf001b9d938bd6afc9c64
BLAKE2b-256 0834569251a4265721c608627f0f1659107958fa3b1c7bd77e9ad9819fab7f0d

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1592371d18964fd7c306bc567ee1be392d3e7e96860fc8d9293957e466af2508
MD5 f0ccff0624fc809866bfa1814d242bf9
BLAKE2b-256 56167e1ed21bb228815fc38443ea2839befb91661f6f0a8745a72c0c791c27ef

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 92ce3bb52ec5a8a4a536a64e55b86995f65ca2924eb6c8810dd9d0b57d8db3c4
MD5 39ee4672ce6a2286e0a33b8a027ba66c
BLAKE2b-256 edaa25a302ca6d2d0829e3941c03539bd932c0f0600a9463b4c95e1718392e00

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7765831e5cc3a0e5d4e49c3c0ec741ed98c59573a116287d2bd267546f89c312
MD5 b07ce66c1d2cd63fe438684eedcfba14
BLAKE2b-256 ed4ecd2a8cdcea09f73144837e2025a2e702294edc94b5a45bd4cd3770c652c2

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6413285b8cbd0433ebec8246b18e844b1338acd5570d5d696dec1ea968536983
MD5 144ba590fd8c743a6d1ab3e79754ca28
BLAKE2b-256 629983090e4a342fcefd2422e8a807d0f6289f1823a1c00f30317ccc0170395b

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a9edea74351811b812097a9d34dc656af86450f3f43aae2d537b9a240a740639
MD5 93a1a6e93c4f8a117f3a8c7b264241b6
BLAKE2b-256 bd311dac5d1914ee7d7b528f00d5983b17720a3de6e7b60d24d7ced429fd2245

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a9fa604f05f7ddc5e01956d6f6d250edeed738f766ef6103ed1aaa2c5f1f2e98
MD5 e3ef6932480e45328ed4e8502243a9af
BLAKE2b-256 25b476ac180905fec49ad10828d0b7c0b8f78a752a6e30da5c665435dbae6ca2

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a770020e816cfe66c9a60a32f8b6fbed0decbaeb7e51bf8b4e3055c17b79403
MD5 335bb7c09cc0dead63409438e494e05f
BLAKE2b-256 cf5f6da0204ab59f113acccc2c84c6dafc886ec8d4f72b39bc2e61a79835b33f

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a3a1a6c1f9dd62d08532004425b45a81644900c060d2f1bd4d8c291cfb9aaaf1
MD5 730e51003cc58928726f68448dcc0048
BLAKE2b-256 8a20913cd77a90387d3988bb829c43b23b55168027b3d9fe1a3c4ae103d182d9

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f229a2e52a038bace91177cb5abb20a8f23c41fe6a5aece291407ba9ad8c9dba
MD5 204e8967dead5f054d667478319da9b4
BLAKE2b-256 b83431f0622970106220d486a15f733053db15c54fea0439771ff5e7f99265de

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3e867d1fa749c8311cd12f7cba290d7becce7c54901549fa3785d4bccb5e02a
MD5 dbd0e56855a304a140e8ed9129930f2f
BLAKE2b-256 c530d0678ce4f3fece61f4b05d37942cb41169377a511af5cbbf4210a23e48e6

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6a83dc6ebafc34011e84de0633ef703a61639f91c0e18d49d71d494e3c7e3515
MD5 ee01fa6aad42b8501739c89b1d930466
BLAKE2b-256 66763f9267f75d55a2b255d404f34c1b329c059ac14079bf284d345d71257b50

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 86b6dc5ff409d1fa76aa1da24ebeb93b85dd795e2c5c56d4106957c78b236ee7
MD5 019718026ef956416c8abfc5fd4f20f9
BLAKE2b-256 40ec3395e2cc728a9ba4360c2698d13c76434b0c7c8d010e5017a5b4f1d87f75

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 79cae0f83b67a7f1f0f7cee865fdfb80bb44a2e05c112ec5f7170c3d758a30a4
MD5 b556fca5a33ff064867ab4613811914e
BLAKE2b-256 170d555a93f65c05cd214d200fefc633e4d82eefeb3f68cdfbf7a7873af6ff7a

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c79c10a81fa877499bbff7cd2f4d6f3d3273ddf293c2a235c222503caf6bdb77
MD5 d090b21140c2d21f17ff61551f21f17f
BLAKE2b-256 8085d9a2b74a8124686323264689d077f9da91555768df9fc469ed0f8e726544

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fcef5da434d200470870b715080017164da674b2a79dde4f474448fb47c5f5e
MD5 bce2fd0ba68e5a08490f2fd4c17d9c12
BLAKE2b-256 4ddb5203e77a07777e3d86fb61f6f97c8d56565b1b541f286fbcc8caf9f980d2

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ff5ec49624930beb47d6c47506a17b8f77f094bb4ca726e29c7ec8c8aea56fa
MD5 3e2a288a5839f122c9e0740111eb65bc
BLAKE2b-256 14e9735d3a8e6788298a0e2eb1dfafbf2bad1f301c861861d28c9c292925d098

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f57abf65206709703dafa1657fd9ff5a4ecfe0ec043a668b21fd6b3fd7594ee3
MD5 bf62fed2f7a5c320121d8e7d8ff6396e
BLAKE2b-256 ac0ea45d6811cf874468389a2b4262d82f235a3a7e6f7c2bf56c6b702ad223f4

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52657cf0f27ba901ecacbfb698e7f0fc399fda77f662d1f64ab5575a0c6f34b0
MD5 8c54f7304d140fca02a463a84f4e1037
BLAKE2b-256 2ce8875023b4c303a68187cab8afd7406ad56e0f3ca8990d4fb60068586f5ec4

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f8ada635bccb576e097475ae0c1741b1e359c196a38b90ff3f0c55a1b85b2db5
MD5 ca8012c9daef5f570719bf6f95f5e5af
BLAKE2b-256 4c24d91605834db165b2ac2d042d1d4d77dd3c8c191edd8be56e5a786f43f19b

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dae67cce35f7ad1cc4f3dde09b8d119e3b8795312be75d703d82ceda70a809ee
MD5 4ec20f1b332171c546ea31183280bb99
BLAKE2b-256 e313bd5a758e6d0eaa2dfaef2175d16af83302ff3e64c80c59d1d0f2ecb349ee

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a421c5a662d31345e4cc79e3d347adfd5272adad4023b57a145686923527ca1b
MD5 118cd6c09ff4da7c43e221731540bc46
BLAKE2b-256 f82c8baddac75d661b497cb5642e262d95c3a612d53bd460d8ee10e2c6d3fc91

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 eb69382c6b6150a8202aacc1b6f39753348d8be877e3409954aba546e3950d09
MD5 20ec5cbf0bded26493c1dc280b569ecc
BLAKE2b-256 c9557c9b18ca9d380b0ed0b73a7b456cf80f709c6a4dc2d6b5c86beb09e23ab4

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f567524c0db1d64b43556452d4646ef4c8e7da6701c00a07e60742289c8ebb59
MD5 b48ac8e4e1876110dc864636efcfdadb
BLAKE2b-256 358e96b0e420dd2885f29faa097861168025f7d9997cc249e1c1e8727a640b8f

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15c8eff06f55427695c8b4e6a0961dbec129d2daf23d679c4b0a7a464f1dcf09
MD5 9c11c4ca2d551e3b7c45da5b5c04c4a3
BLAKE2b-256 cf7b5bff27465c87aafd87134bc69bd681fd872aad4a57d661639d1b680f6052

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e1e98bf083d55023afd7cb26d4de57366180bab8f70ff62fc2ef3124dd5a926c
MD5 e69f158d19ca7a3ed3de7ac0d7acec17
BLAKE2b-256 365dffbcb91f7801f94ca0703e46e3f65d701731e9f5eff51bcd2074eaf9f907

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ac102bfe8282ae91371d20d644d65a34d15f5de573798f2b6cb3912ec888635
MD5 502532f8c2445ea3f44609491d063dc1
BLAKE2b-256 42aac9e349e314d692e032d1314dafe5419669d92edfd50a09b4f446c39fd169

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.4.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.4.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f75f37a0ff532ffabba3b67733e1b84789665e1c54e90f06e17a694c2232db36
MD5 799ca3b520534a1122fded106b43d09c
BLAKE2b-256 2ccef2d3e79831e32432ddf610c500f31591880966ddffc9229539bb6804d408

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page