Skip to main content

Python support for Parquet file format

Project description

https://github.com/dask/fastparquet/actions/workflows/main.yaml/badge.svg https://readthedocs.org/projects/fastparquet/badge/?version=latest

fastparquet is a python implementation of the parquet format, aiming integrate into python-based big data work-flows. It is used implicitly by the projects Dask, Pandas and intake-parquet.

We offer a high degree of support for the features of the parquet format, and very competitive performance, in a small install size and codebase.

Details of this project, how to use it and comparisons to other work can be found in the documentation.

Requirements

(all development is against recent versions in the default anaconda channels and/or conda-forge)

Required:

  • numpy

  • pandas

  • cython >= 0.29.23 (if building from pyx files)

  • cramjam

  • fsspec

Supported compression algorithms:

  • Available by default:

    • gzip

    • snappy

    • brotli

    • lz4

    • zstandard

  • Optionally supported

Installation

Install using conda, to get the latest compiled version:

conda install -c conda-forge fastparquet

or install from PyPI:

pip install fastparquet

You may wish to install numpy first, to help pip’s resolver. This may install an appropriate wheel, or compile from source. For the latter, you will need a suitable C compiler toolchain on your system.

You can also install latest version from github:

pip install git+https://github.com/dask/fastparquet

in which case you should also have cython to be able to rebuild the C files.

Usage

Please refer to the documentation.

Reading

from fastparquet import ParquetFile
pf = ParquetFile('myfile.parq')
df = pf.to_pandas()
df2 = pf.to_pandas(['col1', 'col2'], categories=['col1'])

You may specify which columns to load, which of those to keep as categoricals (if the data uses dictionary encoding). The file-path can be a single file, a metadata file pointing to other data files, or a directory (tree) containing data files. The latter is what is typically output by hive/spark.

Writing

from fastparquet import write
write('outfile.parq', df)
write('outfile2.parq', df, row_group_offsets=[0, 10000, 20000],
      compression='GZIP', file_scheme='hive')

The default is to produce a single output file with a single row-group (i.e., logical segment) and no compression. At the moment, only simple data-types and plain encoding are supported, so expect performance to be similar to numpy.savez.

History

This project forked in October 2016 from parquet-python, which was not designed for vectorised loading of big data or parallel access.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastparquet-2023.7.0.tar.gz (393.3 kB view details)

Uploaded Source

Built Distributions

fastparquet-2023.7.0-cp311-cp311-win_amd64.whl (616.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastparquet-2023.7.0-cp311-cp311-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fastparquet-2023.7.0-cp311-cp311-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

fastparquet-2023.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastparquet-2023.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

fastparquet-2023.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-2023.7.0-cp311-cp311-macosx_11_0_arm64.whl (580.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastparquet-2023.7.0-cp311-cp311-macosx_10_9_universal2.whl (784.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-2023.7.0-cp310-cp310-win_amd64.whl (618.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastparquet-2023.7.0-cp310-cp310-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fastparquet-2023.7.0-cp310-cp310-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

fastparquet-2023.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastparquet-2023.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

fastparquet-2023.7.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-2023.7.0-cp310-cp310-macosx_11_0_arm64.whl (583.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastparquet-2023.7.0-cp310-cp310-macosx_10_9_universal2.whl (791.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-2023.7.0-cp39-cp39-win_amd64.whl (620.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastparquet-2023.7.0-cp39-cp39-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fastparquet-2023.7.0-cp39-cp39-musllinux_1_1_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

fastparquet-2023.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastparquet-2023.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

fastparquet-2023.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-2023.7.0-cp39-cp39-macosx_11_0_arm64.whl (584.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastparquet-2023.7.0-cp39-cp39-macosx_10_9_universal2.whl (793.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

fastparquet-2023.7.0-cp38-cp38-win_amd64.whl (630.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastparquet-2023.7.0-cp38-cp38-musllinux_1_1_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fastparquet-2023.7.0-cp38-cp38-musllinux_1_1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

fastparquet-2023.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastparquet-2023.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

fastparquet-2023.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastparquet-2023.7.0-cp38-cp38-macosx_11_0_arm64.whl (590.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastparquet-2023.7.0-cp38-cp38-macosx_10_9_universal2.whl (795.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file fastparquet-2023.7.0.tar.gz.

File metadata

  • Download URL: fastparquet-2023.7.0.tar.gz
  • Upload date:
  • Size: 393.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for fastparquet-2023.7.0.tar.gz
Algorithm Hash digest
SHA256 66ee6448fd8750d7028ccea2072f404ab05e4e00d98fd33f02dad1260e819aaf
MD5 22eae1829808cd134e6b8922addc837c
BLAKE2b-256 037be13441d2dce9b21562c8b0647ad2316241eddce4dac3c4eefa05332ddfd8

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f1325922db29a065f84118ffa2976783b53e6da87680762e6dcc20885cd94082
MD5 16ca5bd28fd4a2e82bd9f09458b6ba35
BLAKE2b-256 c2f99a43812b7b55a15d1c643863ce98db6b34a2a2b72320a5f3b27f1afd028a

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 de0a1250e9b0044ca218c0e5c4fcacf3eb2a5b22af2021fcff895463261280e6
MD5 35eb6a179e478e037a423419428b6dd7
BLAKE2b-256 255ccb0e7a15b003b5591c7930c2e2ed654574e3217a636ae6074bd6ce13fb28

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 3d47918ca184ca39690d6903695e691aef26ed4f4d76ce7f2e4d23f409fe17ce
MD5 60216c49aa3abe15b861275c31062db0
BLAKE2b-256 7e7eb0db7bd4ff1118e19bfb99031c1a96cb6c0ff27861472936933a4c0e3627

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b8c9667b6a8f9835c018e481fcff9ca34661818bf02a17e13de9a86328f3780
MD5 a07bb2bec9ff8e9f8ae294d1284df4a1
BLAKE2b-256 a6ba390cbe1b20882e07c0c9d169f27a94ecfd3be145330cfe87e672a45590d9

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0fdb44543f8884f7d839fcc5d65e17ded933b5b84d39e5fa0daa17982f833fa2
MD5 85bfa93b7ee03782a1d0c0966d0a07b4
BLAKE2b-256 769d2b335d2d8a2f67e590555e492fef7c77b7fe434607607fde489c0b9fba12

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d24b79ba87561554abd589ad45b42199112b4f9fa56824164ffe9e3db9d0654f
MD5 fdf45354a1013f0a2ae9cd9e5a924976
BLAKE2b-256 0eda434ca4ba5abf0983b32b16ea17cf4a31ce921f4dc108544032d4e2967127

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 297e75946d817755cab3dc91b7493b03932e604d7c118ec56c2e589da1d5132c
MD5 fd9d06c01dfd5ba83dcd02f40852608e
BLAKE2b-256 7cf630c4a819032a88da4aeb315b95a4012f7420b0287b693cc6ba3bfc1ea43f

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 19f74093ee457b9b8ca0050f3e1d13f1fa41604d10da84869b3a93ed4983b992
MD5 e69f548105f1a87ad97f9fcf6af828a6
BLAKE2b-256 1ef0fe523a6385b11a9258ce734fc33eea63c2fa04b45eb81b66f9daa71a5acb

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 804fb946f1cd19686d2ea34e27cb6ba679fa76e9279694d37a676747f140492f
MD5 c0d57051e0e611b3612e811391dc4166
BLAKE2b-256 39591f193df7f828ed2a1ff7b20f0b1210a6e1a37440384163682a028ab639a7

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 969f103567a63d7108b02fd11d97a80942e01bcdb7cffc3991f84aa900ed1183
MD5 db3a13d4d909acadf1f1ad136a4283d8
BLAKE2b-256 58e2b11f0e943ad7fad83b90a526ee3730b7bc94cdfce8e0f1a35648da5b9e80

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 ac0d0ad6f70e170339a55e2611946e48b34519f0421abc00c667b0e564910a8a
MD5 339821d15e1f4c4c019922bf0fa31a92
BLAKE2b-256 7bb6f972f84f32480f77b9e840db5c7fb8e42c0e1c6445afb54c261b16f1aaeb

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28a4758d83c4b60c5a0ce6e4cd438576f4d53e2776a6c0160d140c65054c5c90
MD5 65cdb039d07e9cdc86e778ffeaf3e556
BLAKE2b-256 43f83882b2d605c6ddd8c7c844dee8cc7a40fed0c12c1ad26a7e09954609583b

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 079637c50fd03c0724b7858542b5d45de80105f9fa89d8475ba73bba5c03e240
MD5 646186f47f744d9d7b186d948e7b9243
BLAKE2b-256 0b374aa6a115617a9729ecca676410b67f949cad11a4966669d38e53eeb78244

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c5aabbb55d35f11e2f72f18b0313aac839c0d42b1f16aa3cd22c17a1fab78ca9
MD5 22448d8f5605f1d76d8937bd2b1db576
BLAKE2b-256 65105aa9aa5743790a96eb0dcff3820371612b9fc706d1504ac79700178cfdd4

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e88f804f4ce6ecf89f7c034beffcbcf7fc2bcc94eb0b43e941a923e9ac4fd9cd
MD5 7015b4beddd5ecf3a47ed4a6477e5d1f
BLAKE2b-256 9785616b4c0f7aa0084069a12a761da421bdaa5e87b41281f21ab51942d8c50f

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 463190b44f545be05d31edabea99fb3ccf6a849500a0b7cf23ede1c2f4108520
MD5 e7a7ba801bdda24f54f66103a3c34b05
BLAKE2b-256 be4ee54d57759c38c38b7699482ab92c8955d9a00ca849d6259bcd84d592e3c2

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 37865fb74f3ee9b4d4c2cb4197587657ffa10e120747db5192af8d00794e3408
MD5 0ba222f5161d5c003676e484cfb77113
BLAKE2b-256 548235a1a10e1433a3af4c8cbf7ee37421967d9cffd82a40bece1a4bf64c4ebd

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7ecbe7dd4f9e97d777398b63b5e04fc4424928372a1f14f38956ad0d3ba89cdf
MD5 93d7978a18968b46ebade1faab2037b4
BLAKE2b-256 d0b1d6104fe318fd8987ceddc9ef6a0c9a87637751c8fea10b3cecfcf453a413

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 fe517e5a1a8a7cf1cfd09a1c584c95db12de2fcfc52e8ff28e8e6705167752ed
MD5 72edbedda57a2ae9e1410b61816e122e
BLAKE2b-256 25433f0655368bd68665fb56951a93359aeba4baab47a2b32a1237790249c04d

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de5f864f25983f04d0bdfb74c1c857f5489cb3b26bb258b3e68fad2923b4264c
MD5 2b0c82154cc0f2681ab79ed6b775a1d1
BLAKE2b-256 5c0e5ca16ebfbdd36000077ca9b913ec4a8d5c71237cbb95ab90e38f8ab5af4e

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 07f3a5e83b454a47b13c0b4fb2acfe862619915f3702dbc1724890e5d323abbe
MD5 4caba2cd6b699f598bc28785ca3ad6bf
BLAKE2b-256 06460f8f5f1dc0eb45c17422c98ba0443fa6eb68ce5ad9697b3f1c0d6c5888fb

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4e32585eaae9a1478337aca644634f9aec33a32047b707754c9d998314dfef90
MD5 fdad0cc3aad0eeb22f9f52831fa7b82e
BLAKE2b-256 8e57b239aaf6ac73c43943f913082a1c4722b1340541b1759bf24fa4ef6e16fb

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ed33312a2d5d1070277d8df64a20ad14cc51466172538dd4612fd9c06957685
MD5 4b74e3840e711a294669d59753bd0b30
BLAKE2b-256 d90e0018aa452cab57d804b85983e4a6b79bf95d2dcff7ff46db1976cbbdd63b

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 be5dfa7f221e2bd6c32f010fba2f873e3060b109bc5b5f99bf0013a4cb36994d
MD5 abfeb7ed713624f1b36985fca99b56ba
BLAKE2b-256 c2636cf9fd75860c0ead74ba026d1b8c4ab571170743cadde827c92cbf9458ee

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 11d39457c5aa731f710e9fdfab6552c8399ff8f784b8ef938ea6f5dac3dcc571
MD5 da90ed0e85f31879df004f99714bd3e5
BLAKE2b-256 b559b721afd5ebbd72460c38713165d287be3ce894ebba7ad1886de43f6e871d

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 eed1dcdbb56c166cdfcf65bfb5d4d6abdb50d873541f8ce74d3319349c68de42
MD5 be4d128b65e85d1899de2c517ccf71cd
BLAKE2b-256 636122b551351e7a36636bc63f507859b7ebf9c34cc57d8b409bd62a45cd6248

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a8dc1c27000a57d03975ff0801a43203efb13b8cdec570ae05235a717f85b51d
MD5 4b00630e15086893d35583b18c1684d9
BLAKE2b-256 17c68db9c3fb4c12a68c6da88a5b8992f5749a5fcd527a71149c4fd01e7ec1c3

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd09a57bb5169d08b1180b1611431340697aa35f2aa6bf8826ebaf81d5c95688
MD5 02da7ffcfdf49febdc3a362e3d141251
BLAKE2b-256 5baed682d089d5944841088ff66f33777bc6b7ea2626cd07f82c1f2cda97f388

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 28f54fdd5a3d2470834697a3f0d3cfddef51ea6c08e058f94fdb0f1d0158ead1
MD5 36c23287bf0ee474e20ff09b6ca650eb
BLAKE2b-256 5718937c9166f61ebda6233d61276fb3b7e875ce8b01ef2a91ade97fb7866902

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 58ea7d05bec6c010ff8f0139806c152925d1d2609eb19517568714911d8cde37
MD5 60bb730b629c63e73068921abb8d4199
BLAKE2b-256 43583fbb345fc01304e2ed50c336f3a065be92d535ac45bdde981c5b138b1266

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 915af569d1dd6c116e7487dfbd9b74ce3fa0f9cf896df84e646cbd945f19b51c
MD5 a507d6562eddc3162ffb0db4f0b6fd54
BLAKE2b-256 03076aab73cfd1892484f0cfe7bb4688a96d73812432a814f04c24e1bcd0ac45

See more details on using hashes here.

Provenance

File details

Details for the file fastparquet-2023.7.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastparquet-2023.7.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4cc2caf2160f5ebbf3d83d9e9a7a5a4c3053baf6fe0bf9b7ff15672d09c017a3
MD5 64bb710f29ca3e135c5dd1aff5ddd016
BLAKE2b-256 85d5b06e657d9947d519398f73e1e675288c44441471869efdf61b9508382075

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page