Skip to main content

Fast random number generation in Python

Project description

fastrand

Fast random number generation in Python using PCG: Up to 10x faster than random.randint.

Blog post: Ranged random-number generation is slow in Python

Usage... (don't forget to type the above lines in your shell!)

import fastrand

print("generate an integer in [0,1001)")
fastrand.pcg32bounded(1001) 
print("generate an integer in [100,1000]")
fastrand.pcg32randint(100,1000) # requires Python 3.7 or better
print("Generate a random 32-bit integer.")
fastrand.pcg32()

It is nearly an order of magnitude faster than the alternatives:


python3 -m timeit -s 'import fastrand' 'fastrand.pcg32bounded(1001)'
10000000 loops, best of 5: 23.6 nsec per loop

python3 -m timeit -s 'import fastrand' 'fastrand.pcg32randint(100,1000)'
10000000 loops, best of 5: 24.6 nsec per loop

python3 -m timeit -s 'import random' 'random.randint(0,1000)'
1000000 loops, best of 5: 216 nsec per loop

python3 -m timeit -s 'import numpy' 'numpy.random.randint(0, 1000)'
500000 loops, best of 5: 955 nsec per loop

If you have Linux, macOS or Windows, you should be able to do just pip install...

pip install fastrand

You may need root access (sudo on macOS and Linux).

It is sometimes useful to install a specific version, you can do so as follows;

pip install fastrand==1.2.4

Generally, you can build the library as follows (if you have root):

python setup.py build
python setup.py install 

or

python setup.py build
python setup.py install --home=$HOME
export PYTHONPATH=$PYTHONPATH:~/lib/python

Changing the seed and multiple streams

  • You can change the seed with a function like pcg32_seed. The seed determines the random values you get. Be mindful that naive seeds (e.g., int(time.time())) can deliver poor initial randomness. A few calls to pcg32() may help to boost the improve the randomness. Or else you may try a better seed.

  • If you need to produce multiple streams of random numbers, merely changing the seed is not enough. You are better off using different increments by calling the pcg32inc. The increments should all be distinct. Note that the least significant bit of the increment is always set to 1 no matter which value you pass: so make sure your increments are distinct 31-bit values (ignoring the least significant bit).

future work

Also look at https://github.com/rkern/line_profiler

Reference

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastrand-1.8.0.tar.gz (7.9 kB view details)

Uploaded Source

Built Distributions

fastrand-1.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (18.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

fastrand-1.8.0-cp310-cp310-macosx_11_0_arm64.whl (9.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastrand-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl (9.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastrand-1.8.0-cp310-cp310-macosx_10_9_universal2.whl (11.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file fastrand-1.8.0.tar.gz.

File metadata

  • Download URL: fastrand-1.8.0.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for fastrand-1.8.0.tar.gz
Algorithm Hash digest
SHA256 f24d880d7bc65853aa1a69223dc065d855fecdecfe3fbcaa2ac90c6a5df27453
MD5 31cf132e267d581d81f78cf0b527a060
BLAKE2b-256 89365c807bac8843ffbdda472c49c62a41eb3a1e174cb6c60cd36d47cc1e6120

See more details on using hashes here.

File details

Details for the file fastrand-1.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fastrand-1.8.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0db5172ca2f05b0cdd901492726be3ff8e492efc93d1381033583e0a8b1efb47
MD5 70dec442fdd9989b51978408f31d1bbc
BLAKE2b-256 fddde89fa5424884711a3f9f7ab3724cd05e92c942c03636fc989630b61ad901

See more details on using hashes here.

File details

Details for the file fastrand-1.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastrand-1.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3925b3f6475cbac24e16aef004067e041643d9fc50ae65b1896775b9a5eef486
MD5 6c8a73ef33f97d7fd70f4e0b664bcab0
BLAKE2b-256 edd1b85ae1a188e8731052af32c966c715a06c67426937ac266d4686254b3ec0

See more details on using hashes here.

File details

Details for the file fastrand-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastrand-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec9f8f238232feec26958fec935794ea24210d72c32645a1e21439392b2f9719
MD5 ac1d7a07aafaae66557d418f38802ad7
BLAKE2b-256 955af9a5a4f91af76d637741a49ad1e9cae40ef98477c88a82ab9132778e3d9c

See more details on using hashes here.

File details

Details for the file fastrand-1.8.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for fastrand-1.8.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 44f38d081522b09376c5b7f93c7d3be5d299f10dfa6d8b7e96b7c8236509c74e
MD5 3d32afbb70ba1ee915f3e35848d6dd46
BLAKE2b-256 c66965ee55a2ff6ff1076201f18d62112350bf99f1481f1094cf1b54af88b2a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page