Skip to main content

fasttext Python bindings

Project description

fastText CircleCI

fastText is a library for efficient learning of word representations and sentence classification.

In this document we present how to use fastText in python.

Table of contents

Requirements

fastText builds on modern Mac OS and Linux distributions. Since it uses C++11 features, it requires a compiler with good C++11 support. You will need Python (version 2.7 or ≥ 3.4), NumPy & SciPy and pybind11.

Installation

To install the latest release, you can do :

$ pip install fasttext

or, to get the latest development version of fasttext, you can install from our github repository :

$ git clone https://github.com/facebookresearch/fastText.git
$ cd fastText
$ sudo pip install .
$ # or :
$ sudo python setup.py install

Usage overview

Word representation model

In order to learn word vectors, as described here, we can use fasttext.train_unsupervised function like this:

import fasttext

# Skipgram model :
model = fasttext.train_unsupervised('data.txt', model='skipgram')

# or, cbow model :
model = fasttext.train_unsupervised('data.txt', model='cbow')

where data.txt is a training file containing utf-8 encoded text.

The returned model object represents your learned model, and you can use it to retrieve information.

print(model.words)   # list of words in dictionary
print(model['king']) # get the vector of the word 'king'

Saving and loading a model object

You can save your trained model object by calling the function save_model.

model.save_model("model_filename.bin")

and retrieve it later thanks to the function load_model :

model = fasttext.load_model("model_filename.bin")

For more information about word representation usage of fasttext, you can refer to our word representations tutorial.

Text classification model

In order to train a text classifier using the method described here, we can use fasttext.train_supervised function like this:

import fasttext

model = fasttext.train_supervised('data.train.txt')

where data.train.txt is a text file containing a training sentence per line along with the labels. By default, we assume that labels are words that are prefixed by the string __label__

Once the model is trained, we can retrieve the list of words and labels:

print(model.words)
print(model.labels)

To evaluate our model by computing the precision at 1 (P@1) and the recall on a test set, we use the test function:

def print_results(N, p, r):
    print("N\t" + str(N))
    print("P@{}\t{:.3f}".format(1, p))
    print("R@{}\t{:.3f}".format(1, r))

print_results(*model.test('test.txt'))

We can also predict labels for a specific text :

model.predict("Which baking dish is best to bake a banana bread ?")

By default, predict returns only one label : the one with the highest probability. You can also predict more than one label by specifying the parameter k:

model.predict("Which baking dish is best to bake a banana bread ?", k=3)

If you want to predict more than one sentence you can pass an array of strings :

model.predict(["Which baking dish is best to bake a banana bread ?", "Why not put knives in the dishwasher?"], k=3)

Of course, you can also save and load a model to/from a file as in the word representation usage.

For more information about text classification usage of fasttext, you can refer to our text classification tutorial.

Compress model files with quantization

When you want to save a supervised model file, fastText can compress it in order to have a much smaller model file by sacrificing only a little bit performance.

# with the previously trained `model` object, call :
model.quantize(input='data.train.txt', retrain=True)

# then display results and save the new model :
print_results(*model.test(valid_data))
model.save_model("model_filename.ftz")

model_filename.ftz will have a much smaller size than model_filename.bin.

For further reading on quantization, you can refer to this paragraph from our blog post.

IMPORTANT: Preprocessing data / encoding conventions

In general it is important to properly preprocess your data. In particular our example scripts in the root folder do this.

fastText assumes UTF-8 encoded text. All text must be unicode for Python2 and str for Python3. The passed text will be encoded as UTF-8 by pybind11 before passed to the fastText C++ library. This means it is important to use UTF-8 encoded text when building a model. On Unix-like systems you can convert text using iconv.

fastText will tokenize (split text into pieces) based on the following ASCII characters (bytes). In particular, it is not aware of UTF-8 whitespace. We advice the user to convert UTF-8 whitespace / word boundaries into one of the following symbols as appropiate.

  • space

  • tab

  • vertical tab

  • carriage return

  • formfeed

  • the null character

The newline character is used to delimit lines of text. In particular, the EOS token is appended to a line of text if a newline character is encountered. The only exception is if the number of tokens exceeds the MAX_LINE_SIZE constant as defined in the Dictionary header. This means if you have text that is not separate by newlines, such as the fil9 dataset, it will be broken into chunks with MAX_LINE_SIZE of tokens and the EOS token is not appended.

The length of a token is the number of UTF-8 characters by considering the leading two bits of a byte to identify subsequent bytes of a multi-byte sequence. Knowing this is especially important when choosing the minimum and maximum length of subwords. Further, the EOS token (as specified in the Dictionary header) is considered a character and will not be broken into subwords.

More examples

In order to have a better knowledge of fastText models, please consider the main README and in particular the tutorials on our website.

You can find further python examples in the doc folder.

As with any package you can get help on any Python function using the help function.

For example

+>>> import fasttext
+>>> help(fasttext.FastText)

Help on module fasttext.FastText in fasttext:

NAME
    fasttext.FastText

DESCRIPTION
    # Copyright (c) 2017-present, Facebook, Inc.
    # All rights reserved.
    #
    # This source code is licensed under the MIT license found in the
    # LICENSE file in the root directory of this source tree.

FUNCTIONS
    load_model(path)
        Load a model given a filepath and return a model object.

    tokenize(text)
        Given a string of text, tokenize it and return a list of tokens
[...]

API

train_unsupervised parameters

input             # training file path (required)
model             # unsupervised fasttext model {cbow, skipgram} [skipgram]
lr                # learning rate [0.05]
dim               # size of word vectors [100]
ws                # size of the context window [5]
epoch             # number of epochs [5]
minCount          # minimal number of word occurences [5]
minn              # min length of char ngram [3]
maxn              # max length of char ngram [6]
neg               # number of negatives sampled [5]
wordNgrams        # max length of word ngram [1]
loss              # loss function {ns, hs, softmax, ova} [ns]
bucket            # number of buckets [2000000]
thread            # number of threads [number of cpus]
lrUpdateRate      # change the rate of updates for the learning rate [100]
t                 # sampling threshold [0.0001]
verbose           # verbose [2]

train_supervised parameters

input             # training file path (required)
lr                # learning rate [0.1]
dim               # size of word vectors [100]
ws                # size of the context window [5]
epoch             # number of epochs [5]
minCount          # minimal number of word occurences [1]
minCountLabel     # minimal number of label occurences [1]
minn              # min length of char ngram [0]
maxn              # max length of char ngram [0]
neg               # number of negatives sampled [5]
wordNgrams        # max length of word ngram [1]
loss              # loss function {ns, hs, softmax, ova} [softmax]
bucket            # number of buckets [2000000]
thread            # number of threads [number of cpus]
lrUpdateRate      # change the rate of updates for the learning rate [100]
t                 # sampling threshold [0.0001]
label             # label prefix ['__label__']
verbose           # verbose [2]
pretrainedVectors # pretrained word vectors (.vec file) for supervised learning []

model object

train_supervised, train_unsupervised and load_model functions return an instance of _FastText class, that we generaly name model object.

This object exposes those training arguments as properties : lr, dim, ws, epoch, minCount, minCountLabel, minn, maxn, neg, wordNgrams, loss, bucket, thread, lrUpdateRate, t, label, verbose, pretrainedVectors. So model.wordNgrams will give you the max length of word ngram used for training this model.

In addition, the object exposes several functions :

get_dimension           # Get the dimension (size) of a lookup vector (hidden layer).
                        # This is equivalent to `dim` property.
get_input_vector        # Given an index, get the corresponding vector of the Input Matrix.
get_input_matrix        # Get a copy of the full input matrix of a Model.
get_labels              # Get the entire list of labels of the dictionary
                        # This is equivalent to `labels` property.
get_line                # Split a line of text into words and labels.
get_output_matrix       # Get a copy of the full output matrix of a Model.
get_sentence_vector     # Given a string, get a single vector represenation. This function
                        # assumes to be given a single line of text. We split words on
                        # whitespace (space, newline, tab, vertical tab) and the control
                        # characters carriage return, formfeed and the null character.
get_subword_id          # Given a subword, return the index (within input matrix) it hashes to.
get_subwords            # Given a word, get the subwords and their indicies.
get_word_id             # Given a word, get the word id within the dictionary.
get_word_vector         # Get the vector representation of word.
get_words               # Get the entire list of words of the dictionary
                        # This is equivalent to `words` property.
is_quantized            # whether the model has been quantized
predict                 # Given a string, get a list of labels and a list of corresponding probabilities.
quantize                # Quantize the model reducing the size of the model and it's memory footprint.
save_model              # Save the model to the given path
test                    # Evaluate supervised model using file given by path
test_label              # Return the precision and recall score for each label.

The properties words, labels return the words and labels from the dictionary :

model.words         # equivalent to model.get_words()
model.labels        # equivalent to model.get_labels()

The object overrides __getitem__ and __contains__ functions in order to return the representation of a word and to check if a word is in the vocabulary.

model['king']       # equivalent to model.get_word_vector('king')
'king' in model     # equivalent to `'king' in model.get_words()`

Join the fastText community

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fasttext_numpy2_wheel-0.9.2.tar.gz (73.5 kB view details)

Uploaded Source

Built Distributions

fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

fasttext_numpy2_wheel-0.9.2-cp312-cp312-macosx_10_9_x86_64.whl (607.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

fasttext_numpy2_wheel-0.9.2-cp311-cp311-macosx_10_9_x86_64.whl (610.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

fasttext_numpy2_wheel-0.9.2-cp310-cp310-macosx_10_9_x86_64.whl (610.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

fasttext_numpy2_wheel-0.9.2-cp39-cp39-macosx_10_9_x86_64.whl (610.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

fasttext_numpy2_wheel-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl (610.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file fasttext_numpy2_wheel-0.9.2.tar.gz.

File metadata

  • Download URL: fasttext_numpy2_wheel-0.9.2.tar.gz
  • Upload date:
  • Size: 73.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2.tar.gz
Algorithm Hash digest
SHA256 484bb7efb0d07c5b6235c8ab44d5e7ddcde5727a25dbc04d18175f777c1e799c
MD5 2257b327976fe58e958ba087648f1762
BLAKE2b-256 c08a8c72c92cd91146ce9948421f3967bc2775deac5215eb8fa3b0487020881f

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e70c79c9ca670f36fcf639eea87bf44adff4082a966c62053747a7dee0f2898
MD5 8812b53c138906c38aa192507c4c21df
BLAKE2b-256 d49da78dfd3e996f5d3c91bcd14a4e249a90da038b99287fda43211281724fdb

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e1d50a174457a11d9317c5eaef007d0971a1baed4b15b8f5c404d69ba7ed2346
MD5 f59ccb782bd7d0cb4c6093906cf2553f
BLAKE2b-256 df13f8a21e5aa6c0a3e382c2346322b6d70fe1435c85cd57c8913b56fc72441d

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a913f7ca57d3f3595d6e1221a2b724b131df2f304433e5ff3ba1fee5731f153a
MD5 6f8974df73e1928c94186f75b3ef70c3
BLAKE2b-256 e970ef326f7eff7e24b274a320c80479fa76860201ef460972c71cefc72f844b

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2528a3466f898bb16cec2e3d9844c5f4b98ea0e7716bb6c023e74c30d13929d3
MD5 1f97823d6c66d31d02a57a87e1a712be
BLAKE2b-256 dd93c485ae800da47f6676c097f223493d895b24d3de35c5f5a80be6fcc173e5

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_ppc64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_ppc64.whl
Algorithm Hash digest
SHA256 c53acbe99f588d4944c7e0784a4757dace564d1f268d5f154885d34451c66307
MD5 4df5cf9c83ccd8880383a155237db49e
BLAKE2b-256 f2ae14b8fd0cd802a75ea33c92157f2893b185549aefcfbd7eff7582fc9657f4

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 3c3de015610b9039acfd1c4cc4a66e88a84b8961384a5d37ef551c3465eb85fb
MD5 1e86714b050487203f5eb9e9c7d2a0ec
BLAKE2b-256 d9399b0f2038fe45ac92183971d8e52c1317c355d846fb30ff2d7a820ec971e8

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 37d085f4b0906732770087f8722b2413199343e01a7f4c31ebec07dfcb971b0b
MD5 a9b95f8fe523a0000a6eea6f7dc5a2a1
BLAKE2b-256 43af4993e0bf993b26f31a1a2739db98dcad758afa21cca729caefbfb4d23c76

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 805ad5ec4299a0a896192ffeec7a1f296480fa6741078ef2c8e2f8068fa879a4
MD5 e86669e4bb4cb76cc7151971b20829e3
BLAKE2b-256 f16d752fee6620ad141346573692ee3d27a8dbfaf75211f02ebe73a86634b6c0

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 21ca228aad6c75349e1ccb231fa454b4ec5bdc2f8a510718d2b74b5742c65f20
MD5 747d8f0d157d0f182219729b9872dbfe
BLAKE2b-256 34e7c664619e42a38f0064f8d9100b76b3bb57bf2679360dece5cf245a5b980e

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ef2f5caf30f7186eb08d3fc3ef598895aa534fc3a1cc31150904aaacee8a3c80
MD5 6c57fdf76b91e2cfa78459bc4027685d
BLAKE2b-256 92a44dce97deb92057c2a71fc5f0d26a28507ecf8c6c64cd93f9edbd410a4caa

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c7e2418f9d907fc68102587c559b707397c552e60cb854fbdb34464cc4c13e3d
MD5 9b7b4151d92673f830ea82bae9072dda
BLAKE2b-256 8d5ad104602e301676d673dc11007be3db9d3774247369c3cf1dc2f6ec379a96

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 690e172053ebbb39a70ad1b45ed225993cd0dccaebed2343233909d518b98b26
MD5 f4db9d4f9c9b70f9bd8d7767f54bd2e2
BLAKE2b-256 1d1e0ac4eec19d4d1d068f72b8b79f67e6d3fff15ff28bdf45188f5322ff9c6f

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_ppc64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_ppc64.whl
Algorithm Hash digest
SHA256 561a6895416cdf3af5fdd792a51da92c40981951311971efae7b5cca280637ae
MD5 071a0b5e9df801c6cf25529f0d961ef9
BLAKE2b-256 34c77e3e6ff49e5e30fac520d00ea853bb81c98a427f7a2e50d4d2df5809526b

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 67f57771f98b1275eb4e3987c54760e44ca7dd95ec10eb2dca0509c5f249f841
MD5 47ee569bb377ab8814c65b75aef5efca
BLAKE2b-256 8d0ac9197382fa9a83242a8e959ba8acff24398b439e7a4731f73bd3abb85a39

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c98ad821cfc02a3e194892130bda970c1d8f6801a49c7117eae337d6b5be38db
MD5 99e64fe0846d0c825a0721602a6e16ce
BLAKE2b-256 acf8ac28bbc44d6519d8687902acf99a0b42e5feef908480cddb96186af1f8d1

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a0f791752978043692c6bb5094bae0afeee505f4d50f441d4fa1f9da5233f1dc
MD5 a1c8179c98986124f8bcbce047cc04da
BLAKE2b-256 50d7f3c7fd7c3e4d7e264fcdfcdc61457a084159380d0da21f1e69a949b53a97

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d47fc7b0f7a4410eb45437397803f9be217240baba660c1cdc8b493365dd1421
MD5 51d8e412dcb42aa00faf3976c3b3ba88
BLAKE2b-256 5c45bd33da5fbcbff711dcbd1d20f28329ece7a95b707ac32709df22a8a02349

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5432ebdbac8cb90d91305f9d985bfd64fbd0d30a8f27de9a508c926e47d33051
MD5 b4ee9c28dc03cd0d91f37698873f49ed
BLAKE2b-256 38e4e9b6407538100ced67ddde5941a071ef01482badd023ab8ebcc0d5e6797b

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3bdd73e87291e59f37cf3dfdb7412ded337a09889346e9a8280e0123689cd776
MD5 2e1e3745706b3d28ebf019f986f80475
BLAKE2b-256 ad312aa3079b6a1f9340fea711dc72f6ebe9e20a57bbbb225cbdc6cc536d025e

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 39ae79a37cb9e1572067e20a8ef176a944bd8279ec1bc0fd4ffad7849bcf58ea
MD5 f54d3bb14366f3054474fa2fc7667a04
BLAKE2b-256 9a6006493fd498d0812287e2368719e4c0a2ee49b753d15e7d01bd435006c974

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_ppc64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_ppc64.whl
Algorithm Hash digest
SHA256 8dd3fc0e4f4448c67eded39ea243c2393d3ae1ff862826c17b1ceb0714e55e76
MD5 7f5ba20c21ed792a8e4405f9c47c2165
BLAKE2b-256 2526ba072dbf3125bf9e687ab5a3ec6b476770db5ec3c5d2b52dc983de8dde90

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7b64852fa8f6afe4e68b11519341d3d38343d42d059bca202a8c9107d32aca42
MD5 857ee591a05050fe8d572142ad5be7aa
BLAKE2b-256 00a534ca15ea70e7f66452450909e2e813054ffedfe67ca67749f5076b733c7f

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 758b845caf73475d29cf636fa6227efa04b36ed164d2169a1ee69ce28df8fc97
MD5 5d18219bf3310c526822c977077a982c
BLAKE2b-256 efb9a7ab0ef9ae147336250645a467354035f51e2de048035b2e4e3bf6096f58

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b24c697c2df5c8d90e735a5e8fb8cfd3c1729ee1939675dc7eeb34793173caf9
MD5 8d749a33776b65f90666aedf225d6e6f
BLAKE2b-256 b930458f447dfb9bef5cac1496dd7856de2af6d676bbbb8e44bdd8d3b74fdb23

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e50ab4f2ddd050a42fe7d634fb6237e855739e6d186aa9e6f879f0606bff8256
MD5 4a06420c8969acf413c9ff7f96b966fe
BLAKE2b-256 75fa917d1437a70f6a4ef69c44025d6ab1f13c40903956ed203993fe1709a48e

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7f612905192f23be4ff883ece3c1ee44fca52f0c308c2bc4f2e4b6c0e86d99a2
MD5 e73bef591aadbe79ba84928c20af2ff0
BLAKE2b-256 826d10b91f802316ae538a4cc781e6f4896139728a9975ca7c8bbd02c335ba71

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6782ae35d79dcd57f7cc45f540c20b03a2f2d1e5612bb17c0163fbffe6d12aeb
MD5 aeb7bd6b42bf52e70f65ff4cee25fefa
BLAKE2b-256 09971ee326832e3fe6552050a6f05643de39d9ce6b73cda31bdee3c210cd9db1

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 63f47b7e92f8a5d919b2ed4d0275f97da2a78d2639d882ba9564c8993c3af5d2
MD5 5bcb0724624a9d85117b95c4cb81567a
BLAKE2b-256 c55d2e66d370a5c0f60eba56ccecb0435f342e54ff200227f1798a2f1dc1da9d

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_ppc64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_ppc64.whl
Algorithm Hash digest
SHA256 23af1ecb4b6510a3fe3dd43918857d1c9b5efaf5ac287c116080a7eedfd99a05
MD5 bd9710e5e1928865aa972305455851b1
BLAKE2b-256 5b4b37bb688f3b31040cab754e808eab24f7ff963566f701b9ee182ebcbeafc0

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 8a14c5b85251f0f42d5804840f24f27fcb76d2d733780f1ab0db78ccfc1b5b60
MD5 d18a53fad30d4456a4b41f3f53332bf7
BLAKE2b-256 275d5a50675271557cf9ee427eb6bdaecb48bc04c614d2e2b3084b1711f12149

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e74587b007d0fcc30d15374f4882efb9a42af8657c57c45d42e0a41227b6bcd8
MD5 dd2f787a4dc96c1a565a1a7ec9aabe31
BLAKE2b-256 79d36fa10d2de1be3740aa948d5af414078428c2223cd3a39c447e78e11be48c

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5600cb31ec6d648215cd9c4117796cfdf051d7ac17e5b170b757af7f632c047
MD5 2f8798a0ead4b4904444b81fc9111c1a
BLAKE2b-256 b5c6b0c5cc0bbe55fb969643d68489d7312848479f4dcd60c5ec5b97098ca9b4

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c7baab6f9419c99c4a69b01c06886314d147ea547c7be87e1ba68d37316bb1c
MD5 86db755bfca18aa023520665f47232a6
BLAKE2b-256 12eab9d18381f9c27fa2a3e052b8737dde1d53960dfbb650e489be0f77d19993

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 74e6f4d6c5453a7cd71ac61766c70797165e42de99458c7ce5b3310ce661531a
MD5 8dceb8ab54ad09f421fafad722033a4a
BLAKE2b-256 7b0656b18b5f7e5d75497d2a5db654078384b8ca25caffbb22ab827f7904e540

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 80d57ee6a92c377d9a5d3fba632342889fbe40cedd4ccaa84d14e1ea1a6160a7
MD5 f34a10b9ec5c2ebc4780fca808cde2a6
BLAKE2b-256 6ca0b6baadfe32d454fb72773819b50b0792f0c2e22f7964316854dc698c5fa6

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 92a3f8a59adcd0ff4fed20e0cda5697c38e15a0c57554305621f6c07b93e2d47
MD5 ebc0281642030dfd294d040254899070
BLAKE2b-256 8cee65f98f19d39d4a39cf4041c0c0bc23c7d9917cc68d5acf204c1f71f67a2f

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_ppc64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_ppc64.whl
Algorithm Hash digest
SHA256 4f11928aff5a5b8f705fa614f88dea5fdd04827d593b78e6cd233bbaa9732c23
MD5 f74bc97625ad1410d2e99701ff03f0dd
BLAKE2b-256 01e1bfdb58e85fa86c839d3c3427625255432e902ba4708bbbf6c665de1045e5

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 5297791727b0fccbf657ca57735b7361e48e2a4ea015f2044476f26a6632250c
MD5 1907bed07e34d5460a8d6989ef0dcafd
BLAKE2b-256 c0830063f72ca50490b1cbef01767e89e1f84af15367ca327275b66fdab79c4a

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78110f7f357a3fa6cc720b3fd26c6620ec724d00a8cf7fe0acd6e102ebbe64e3
MD5 2687038aaf68158fa25cca1d56273c13
BLAKE2b-256 0a3e065d40e21852c897a66462461c89beb1037678b0d46b6bbe82b70d8a63d6

See more details on using hashes here.

File details

Details for the file fasttext_numpy2_wheel-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fasttext_numpy2_wheel-0.9.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 630d0a9332e34e7e3bb344128492fe7d8b7e3ee91fd61c410ca2f8ba2fe8ab2f
MD5 0f258c9a6cfd2392d1cefc59768a5640
BLAKE2b-256 ba93c1e583f0687935101e5b0cf18b8175a68e1c57bdcfea2a5f44a9ec63987f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page