Scalable time series features computation
Project description
FastTSFeatures
Time-series feature extraction as a service. FastTSFeatures is an SDK to compute static, temporal and calendar variables as a service.
The package serves as a wrapper for tsfresh, tsfeatures and holidays. Since we take care of the whole infrastructure, feature extraction becomes as easy as running a line in your python nootebooks or calling an API.
Why?
We build FastTSFeatures because we wanted an easy and fast way to extract Time Series Features without having to think about infrastructure and deployment. Now we want to see if other Data Scientists find it useful too.
Table of contents
Available Features (More than 600)
- 40+ Features: https://github.com/Nixtla/tsfeatures
- 600+ Temporal Features: https://github.com/blue-yonder/tsfresh/
- 10 Temporal Features (lags, mean lags, std_lags) [Currently just supported for daily data] Calendar Features (distance in minutes to holidays)
- Calendar features for 83 Countries https://github.com/dr-prodigy/python-holidays
Install
pip install fasttsfeatures
How to use
You can use FastTSFeatures by either using a completely public S3 bucket or by uploading a file to your own S3 bucket provided by us.
Data Format
Currently we only support .csv
files. These files must include at least 3 columns, with a unique_id (identifier of each time-series) a date stamp and a value.
1. Request free trial
Request a free trial sending an email to: fede.garza.ramirez@gmail.com and get your BUCKET_NAME
, API_ID
and API_KEY
, AWS_ACCESS_KEY_ID
, AWS_SECRET_ACCESS_KEY
.
2. Run fasttsfeatures
on a private S3 Bucket
If you don´t want other people to potentially have access to your data you can run fasttsfeatures
on a private S3 Bucket. For that you have to upload your data to a private S3 Bucket that we will provide for you; you can do this inside of python.
2.1 Upload to S3 from python
You will need the AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY
that we provided.
- Import and Instantiate
TSFeatures
introducing yourBUCKET_NAME
,API_ID
andAPI_KEY
,AWS_ACCESS_KEY_ID
,AWS_SECRET_ACCESS_KEY
.
from fasttsfeatures.core import TSFeatures
tsfeatures = TSFeatures(bucket_name='<BUCKET_NAME>',
api_id='<API_ID>',
api_key='<API_KEY>',
aws_access_key_id='<AWS_ACCESS_KEY_ID>',
aws_secret_access_key='<AWS_SECRET_ACCESS_KEY>')
- Upload your local file introducing its name.
s3_uri = tsfeatures.upload_to_s3(file='<YOUR FILE NAME>')
- Run the features extraction process
You can run temporal, static or calendar features on the data you uploaded. To run the process specify:
s3_uri
: S3 uri provided after callingtsfeatures.upload_to_s3()
.freq
: Integer where
{'Hourly':24, 'Daily': 7, 'Monthly': 12, 'Quarterly': 4, 'Weekly':52, 'Yearly': 1}.-
ds_column
: Name of the unique id column.
y_column
: Name of the target column.
In the case of calendar variable you have to specify the country using the ISO code.
#Run Temporal Features
response_tmp_ft = tsfeatures.calculate_temporal_features_from_s3_uri(
s3_uri="<PRIVATE S3 URI HERE>",
freq=7, # For the moment only works for Daily data.
unique_id_column="<NAME OF ID COLUMN>",
ds_column= "<NAME OF DATESTAMP COLUMN>",
y_column="<NAME OF TARGET COLUMN>"
)
#Run Static Features
response_static_ft = tsfeatures.calculate_static_features_from_s3_uri(
s3_uri=s3_uri,
freq=7,
unique_id_column="<NAME OF ID COLUMN>",
ds_column= "<NAME OF DATESTAMP COLUMN>",
y_column="<NAME OF TARGET COLUMN>"
)
#Run Calendar Features
response_cal_ft = tsfeatures.calculate_calendar_features_from_s3_uri(
s3_uri=s3_uri,
country="<ISO>",
unique_id_column="<NAME OF ID COLUMN>",
ds_column= "<NAME OF DATESTAMP COLUMN>",
y_column="<NAME OF TARGET COLUMN>"
)
response_tmp_ft
status | body | id_job | message | |
---|---|---|---|---|
0 | 200 | "s3://nixtla-user-test/features/features.csv" | f7bdb6dc-dcdb-4d87-87e8-b5428e4c98db | Check job status at GET /tsfeatures/jobs/{job_id} |
- Monitor the process with the following code. Once it's done, access to your bucket to download the generated features.
job_id = response_tmp_ft['id_job'].item()
tsfeatures.get_status(job_id)
status | processing_time_seconds | |
---|---|---|
0 | InProgress | 3 |
2.2 Download your results from s3
Once the process is done you can download the results from s3.
s3_uri_results = response_tmp_ft['dest_url'].item()
tsfeatures.download_from_s3(s3_url=s3_uri_results)
ToDos
- Optimizing writing and reading speed with Parquet files
- Making temporal features available for different granularities
- Fill zeros (For Data where 0 values are not reported, e.g. Retail Data)
- Empirical benchmarking of model improvement
- Nan Handling
- Check data integrity before Upload
- Informative error messages
- Informative Status
- Optional parameter y in calendar
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fasttsfeatures-0.0.10.tar.gz
.
File metadata
- Download URL: fasttsfeatures-0.0.10.tar.gz
- Upload date:
- Size: 13.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.14.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7d78ce807e760184b941b3cf31f8a7b269d937bbdfe4179c6bd7f64cf4e97cb4 |
|
MD5 | dec3730c7dcf963ef908b1e9684378e3 |
|
BLAKE2b-256 | 6389fca813e3e10ea7d9be0c83e13b31beba795ba3c02356a0d9cdc560c09791 |
File details
Details for the file fasttsfeatures-0.0.10-py3-none-any.whl
.
File metadata
- Download URL: fasttsfeatures-0.0.10-py3-none-any.whl
- Upload date:
- Size: 11.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.14.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7e5becfb27a4652ab28673770ceb0ce9ebe0144530a6ef54c28369c5dbaac79c |
|
MD5 | b82c876d0008048380aaf843f1c7651c |
|
BLAKE2b-256 | 44b0d13eaed2e8077c89fea2395faba3a1a716664eb4c0495bd40435d05b1829 |