Skip to main content

Python implementation of the Forecasting Inundation Extents using REOF method

Project description

fierpy

Python implementation of the Forecasting Inundation Extents using REOF method

Based off of the methods from Chang et al., 2020

Installation

$ conda create -n fier -c conda-forge python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

To Install in OpenSARlab:

$ conda create --prefix /home/jovyan/.local/envs/fier python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows jupyter kernda

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

$ /home/jovyan/.local/envs/fier/bin/python -m ipykernel install --user --name fier

$ conda run -n fier kernda /home/jovyan/.local/share/jupyter/kernels/fier/kernel.json --env-dir /home/jovyan/.local/envs/fier -o

Requirements

  • numpy
  • xarray
  • pandas
  • eofs
  • geoglows
  • scikit-learn
  • rasterio

Example use

import xarray as xr
import fierpy

# read sentinel1 time series imagery
ds = xr.open_dataset("sentine1.nc")

# apply rotated eof process
reof_ds = fierpy.reof(ds.VV,n_modes=4)

# get streamflow data from GeoGLOWS
# select the days we have observations
lat,lon = 11.7122,104.9653
q = fierpy.get_streamflow(lat,lon)
q_sel = fierpy.match_dates(q,ds.time)

# apply polynomial to different modes to find best stats
fit_test = fierpy.find_fits(reof_ds,q_sel,ds)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fierpy-0.0.1.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

fierpy-0.0.1-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file fierpy-0.0.1.tar.gz.

File metadata

  • Download URL: fierpy-0.0.1.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for fierpy-0.0.1.tar.gz
Algorithm Hash digest
SHA256 abe8f0b98ea254467f7952aa06dcee8f11f7df0108b4673b8b5f99983aa7b40d
MD5 af878c35efc2881fb9a3c0a0366bd894
BLAKE2b-256 6b4aadd12923b6251d053d72aa3420046d4db1dbd8828e0d4c58bb4324eb2766

See more details on using hashes here.

File details

Details for the file fierpy-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: fierpy-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for fierpy-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 41a4482f7903dc39362032d6b6543a836bde8b08828b0a2057d7d52bd9633a5a
MD5 6fe8bb57b1047d97a9433452fcb3d87e
BLAKE2b-256 93fe006eccc6b5a1e6cd0ce70a4c6f0b24bf58d1213160e774e0b29fdab9e60d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page