Skip to main content

Python implementation of the Forecasting Inundation Extents using REOF method

Project description

fierpy

Python implementation of the Forecasting Inundation Extents using REOF method

Based off of the methods from Chang et al., 2020

Installation

$ conda create -n fier -c conda-forge python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

To Install in OpenSARlab:

$ conda create --prefix /home/jovyan/.local/envs/fier python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows jupyter kernda

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

$ /home/jovyan/.local/envs/fier/bin/python -m ipykernel install --user --name fier

$ conda run -n fier kernda /home/jovyan/.local/share/jupyter/kernels/fier/kernel.json --env-dir /home/jovyan/.local/envs/fier -o

Requirements

  • numpy
  • xarray
  • pandas
  • eofs
  • geoglows
  • scikit-learn
  • rasterio

Example use

import xarray as xr
import fierpy

# read sentinel1 time series imagery
ds = xr.open_dataset("sentine1.nc")

# apply rotated eof process
reof_ds = fierpy.reof(ds.VV,n_modes=4)

# get streamflow data from GeoGLOWS
# select the days we have observations
lat,lon = 11.7122,104.9653
q = fierpy.get_streamflow(lat,lon)
q_sel = fierpy.match_dates(q,ds.time)

# apply polynomial to different modes to find best stats
fit_test = fierpy.find_fits(reof_ds,q_sel,ds)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fierpy-0.0.2.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

fierpy-0.0.2-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file fierpy-0.0.2.tar.gz.

File metadata

  • Download URL: fierpy-0.0.2.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for fierpy-0.0.2.tar.gz
Algorithm Hash digest
SHA256 44a541db524ac60df58ceccddf2fc251b848d022725de40d3aea7422b261e6e9
MD5 c5dd9a0be4852a2d8dbfc69807c42295
BLAKE2b-256 4e8808256d79ecd6ade5300961a7e0691e0c0088992e3350ac6f982bd9fc8a0f

See more details on using hashes here.

File details

Details for the file fierpy-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: fierpy-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for fierpy-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 df233de1ae472963e4d7f2d9f045dc5e52ecccf000a5287394915f3c29972e33
MD5 602d5db992a2b5ed9ace93328dd75dbc
BLAKE2b-256 025da74f861899aa918dbdbb71a1d469177cb94df36c28a7717d78d6a4abcdad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page