Skip to main content

Python implementation of the Forecasting Inundation Extents using REOF method

Project description

fierpy

Python implementation of the Forecasting Inundation Extents using REOF method

Based off of the methods from Chang et al., 2020

Installation

$ conda create -n fier -c conda-forge python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

To Install in OpenSARlab:

$ conda create --prefix /home/jovyan/.local/envs/fier python=3.8 netcdf4 qt pyqt rioxarray numpy scipy xarray pandas scikit-learn eofs geoglows jupyter kernda

$ conda activate fier

$ pip install git+https://github.com/servir/fierpy.git

$ /home/jovyan/.local/envs/fier/bin/python -m ipykernel install --user --name fier

$ conda run -n fier kernda /home/jovyan/.local/share/jupyter/kernels/fier/kernel.json --env-dir /home/jovyan/.local/envs/fier -o

Requirements

  • numpy
  • xarray
  • pandas
  • eofs
  • geoglows
  • scikit-learn
  • rasterio

Example use

import xarray as xr
import fierpy

# read sentinel1 time series imagery
ds = xr.open_dataset("sentine1.nc")

# apply rotated eof process
reof_ds = fierpy.reof(ds.VV,n_modes=4)

# get streamflow data from GeoGLOWS
# select the days we have observations
lat,lon = 11.7122,104.9653
q = fierpy.get_streamflow(lat,lon)
q_sel = fierpy.match_dates(q,ds.time)

# apply polynomial to different modes to find best stats
fit_test = fierpy.find_fits(reof_ds,q_sel,ds)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fierpy-0.0.3.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

fierpy-0.0.3-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file fierpy-0.0.3.tar.gz.

File metadata

  • Download URL: fierpy-0.0.3.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for fierpy-0.0.3.tar.gz
Algorithm Hash digest
SHA256 71ee36a28161d4ee6bafd62272f49c2ab46662836ace0d3bf7375717a899c128
MD5 0f8df05feba3a218a57e0baa19b0443b
BLAKE2b-256 750d3688d0dab7c57716dc05803b387ed7e12b25a81eade20e0f682aecfd5b6f

See more details on using hashes here.

File details

Details for the file fierpy-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: fierpy-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for fierpy-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7c034878b9ba111757e755b68f46c0825f06c516cebdb2e0ec376ce0b5532618
MD5 a3c7fba34e777d1b5fe1bfc463bda304
BLAKE2b-256 0f6ab6b022cb24c7163b30b56140dbc36a9b94db59bfa37571b893a4bc3bb4ca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page