Skip to main content

Validation and data pipelines made easy!

Project description

https://travis-ci.org/eflglobal/filters.svg?branch=master https://readthedocs.org/projects/filters/badge/?version=latest

Filters

The Filters library provides an easy and readable way to create complex data validation and processing pipelines, including:

  • Validating complex JSON structures in API requests or config files.

  • Parsing timestamps and converting to UTC.

  • Converting Unicode strings to NFC, normalizing line endings and removing unprintable characters.

  • Decoding Base64, including URL-safe variants.

And much more!

The output from one filter can be “piped” into the input of another, enabling you to “chain” filters together to quickly and easily create complex data pipelines.

Examples

Validate a latitude position and round to manageable precision:

(
    f.Required
  | f.Decimal
  | f.Min(Decimal(-90))
  | f.Max(Decimal(90))
  | f.Round(to_nearest='0.000001')
).apply('-12.0431842')

Parse an incoming value as a datetime, convert to UTC and strip tzinfo:

f.Datetime(naive=True).apply('2015-04-08T15:11:22-05:00')

Convert every value in an iterable (e.g., list) to unicode and strip leading/trailing whitespace. This also applies Unicode normalization, strips unprintable characters and normalizes line endings automatically.

f.FilterRepeater(f.Unicode | f.Strip).apply([
  b'\xe2\x99\xaa ',
  b'\xe2\x94\x8f(\xc2\xb0.\xc2\xb0)\xe2\x94\x9b ',
  b'\xe2\x94\x97(\xc2\xb0.\xc2\xb0)\xe2\x94\x93 ',
  b'\xe2\x99\xaa ',
])

Parse a JSON string and check that it has correct structure:

(
    f.JsonDecode
  | f.FilterMapper(
      {
        'birthday':  f.Date,
        'gender':    f.CaseFold | f.Choice(choices={'m', 'f', 'x'}),

        'utcOffset':
            f.Decimal
          | f.Min(Decimal('-15'))
          | f.Max(Decimal('+15'))
          | f.Round(to_nearest='0.25'),
      },

      allow_extra_keys   = False,
      allow_missing_keys = False,
    )
).apply('{"birthday":"1879-03-14", "gender":"M", "utcOffset":"1"}')

Requirements

Filters is compatible with Python versions 3.6, 3.5 and 2.7.

Installation

Install the latest stable version via pip:

pip install filters

Extensions

The following extensions are available:

  • Django Filters: Adds filters designed to work with Django applications. To install:

    pip install filters[django]
  • ISO Filters: Adds filters for interpreting standard codes and identifiers. To install:

    pip install filters[iso]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

filters-1.3.1.tar.gz (57.6 kB view details)

Uploaded Source

Built Distribution

filters-1.3.1-py2.py3-none-any.whl (37.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file filters-1.3.1.tar.gz.

File metadata

  • Download URL: filters-1.3.1.tar.gz
  • Upload date:
  • Size: 57.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for filters-1.3.1.tar.gz
Algorithm Hash digest
SHA256 f78ca24af80c1f9d67c5c65518bb7aa9f4ee0d3a9848266e29a45f01a5caa76d
MD5 d95cf192bcb8450e37a768d8bbd31a5e
BLAKE2b-256 22e21975cac289f4f2754974169f249f33667f901be1fdcfbc6d8e7167e90b4c

See more details on using hashes here.

File details

Details for the file filters-1.3.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for filters-1.3.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 212089f1f6c0db2bb771a2e0a9a85073523177d35e6fa9b3ded3e175edf148a2
MD5 4428c7738b30e7ca6cf7a75f48c46e94
BLAKE2b-256 701ec2f140a6cc3e4b75020ef7d3271a01bd5c739babf55685ed092fc6945ea3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page