Skip to main content

A friendly companion for FISS

Project description

dalmatian

Build Status

FISS' faithful companion.

dalmatian is a collection of high-level functions for interacting with Firecloud via Pandas dataframes.

Install

pip install firecloud-dalmatian

Requirements

FireCloud uses the Google Cloud SDK (https://cloud.google.com/sdk/) to manage authorization. To use dalmatian, you must install the SDK and login locally with

gcloud auth application-default login

Examples

Dalmatian provides the WorkspaceManager class for interacting with FireCloud workspaces.

import dalmatian
wm = dalmatian.WorkspaceManager("namespace/workspace")

Creating and managing workspaces

Create the workspace:

wm.create_workspace()

Upload samples and sample attributes (e.g., BAM paths). The attributes must be provided as a pandas DataFrame, in the following form:

  • the index must be named 'sample_id', and contain the sample IDs
  • the dataframe must contain the column 'participant_id'
  • if a 'sample_set_id' columns is provided, the corresponding sample sets will be generated
wm.upload_samples(attributes_df, add_participant_samples=True)

If add_participant_samples=True, all samples of a participant are stored in participant.samples_.

Add or update workspace attributes:

attr = {
    'attribute_name':'gs://attribute_path',
}
wm.update_attributes(attr)

Get attributes on samples, sample sets, participants:

samples_df = wm.get_samples()
sets_df = wm.get_sample_sets()
participants_df = wm.get_participants()

Create or update sets:

wm.update_sample_set('all_samples', samples_df.index)
wm.update_participant_set('all_participants', participant_df.index)

Copy/move data from workspace:

samples_df = wm.get_samples()
dalmatian.gs_copy(samples_df[attribute_name], dest_path)
dalmatian.gs_move(samples_df[attribute_name], dest_path)

Clone a workspace:

wm2 = dalmatian.WorkspaceManager(namespace2, workspace2)
wm2.create_workspace(wm)

Running jobs

Submit jobs:

wm.create_submission("config_namespace/config_name", sample_id, 'sample', use_callcache=True)
wm.create_submission("config_namespace/config_name", sample_set_id, 'sample_set', expression='this.samples', use_callcache=True)
wm.create_submission("config_namespace/config_name", participant_id, 'participant', expression='this.samples_', use_callcache=True)

Monitor jobs:

wm.get_submission_status()

Get runtime statistics (including cost estimates):

status_df = wm.get_sample_status(config_name)
workflow_status_df, task_dfs = wm.get_stats(status_df)

Re-run failed jobs (for a sample set):

status_df = wm.get_sample_set_status(config_name)
print(status_df['status'].value_counts())  # list sample statuses
wm.update_sample_set('reruns', status_df[status_df['status']=='Failed'].index)
wm.create_submission(config_namespace, config_name, sample_set_id, 'reruns', expression=this.samples, use_callcache=True)

Contents

Including additional FireCloud Tools (enumerated below)

workflow_time
create_workspace
delete_workspace
upload_samples
upload_participants
update_participant_samples
update_attributes
get_submission_status
get_storage
get_stats
publish_config
get_samples
get_sample_sets
update_sample_set
delete_sample_set
update_configuration
check_configuration
get_google_metadata
parse_google_stats
calculate_google_cost
list_methods
get_method
get_method_version
list_configs
get_config
get_config_version
print_methods
print_configs
get_wdl
compare_wdls
compare_wdl
redact_outdated_method_versions
update_method
get_vm_cost

Usage

Some functionality depends on the installed gsutil.

When using PY3 this creates a potential issue of requiring multiple accessible python installs.

Remediate this issue by defining an env variable for gsutil python

# replace path with path to local python 2.7 path.
# if using pyenv the following should work
# (assuming of course 2.7.12 is installed)
export CLOUDSDK_PYTHON=/usr/local/var/pyenv/versions/2.7.12/bin/python

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

firecloud-dalmatian-0.0.18.tar.gz (149.1 kB view details)

Uploaded Source

Built Distribution

firecloud_dalmatian-0.0.18-py3-none-any.whl (38.0 kB view details)

Uploaded Python 3

File details

Details for the file firecloud-dalmatian-0.0.18.tar.gz.

File metadata

  • Download URL: firecloud-dalmatian-0.0.18.tar.gz
  • Upload date:
  • Size: 149.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for firecloud-dalmatian-0.0.18.tar.gz
Algorithm Hash digest
SHA256 bee9f9815567483953b6c531380a39f20605506a722a861497e027900abcf308
MD5 30aa1b981c798f2bdfff35658d0ff00d
BLAKE2b-256 160a0aebc126f4c0b7842fd5aa63fd1bdd619ec9f8ecd76afe9b0da8f4c23720

See more details on using hashes here.

File details

Details for the file firecloud_dalmatian-0.0.18-py3-none-any.whl.

File metadata

File hashes

Hashes for firecloud_dalmatian-0.0.18-py3-none-any.whl
Algorithm Hash digest
SHA256 bb0b247db68d0ab354deaa3f388f4e8692f3cdf88ba9023db3060cc09f3cfff5
MD5 7e0d86e3efdfb953cad565506ae24398
BLAKE2b-256 3f32cd8fbdaa416e0778b8d045d11d1e59ba49c596444c84b7edff567abf7541

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page