Skip to main content

A friendly companion for FISS

Project description

dalmatian

Build Status

FISS' faithful companion.

dalmatian is a collection of high-level functions for interacting with Firecloud via Pandas dataframes.

Install

pip install firecloud-dalmatian

Requirements

FireCloud uses the Google Cloud SDK (https://cloud.google.com/sdk/) to manage authorization. To use dalmatian, you must install the SDK and login locally with

gcloud auth application-default login

Examples

Dalmatian provides the WorkspaceManager class for interacting with FireCloud workspaces.

import dalmatian
wm = dalmatian.WorkspaceManager(namespace, workspace)

Creating and managing workspaces

Create the workspace:

wm.create_workspace()

Upload samples and sample attributes (e.g., BAM paths). The attributes must be provided as a pandas DataFrame, in the following form:

  • the index must be named 'sample_id', and contain the sample IDs
  • the dataframe must contain the column 'participant_id'
  • if a 'sample_set_id' columns is provided, the corresponding sample sets will be generated
wm.upload_samples(attributes_df, add_participant_samples=True)

If add_participant_samples=True, all samples of a participant are stored in participant.samples_.

Add or update workspace attributes:

attr = {
    'attribute_name':'gs://attribute_path',
}
wm.update_attributes(attr)

Get attributes on samples, sample sets, participants:

samples_df = wm.get_samples()
sets_df = wm.get_sample_sets()
participants_df = wm.get_participants()

Create or update sets:

wm.update_sample_set('all_samples', samples_df.index)
wm.update_participant_set('all_participants', participant_df.index)

Copy/move data from workspace:

samples_df = wm.get_samples()
dalmatian.gs_copy(samples_df[attribute_name], dest_path)
dalmatian.gs_move(samples_df[attribute_name], dest_path)

Clone a workspace:

wm2 = dalmatian.WorkspaceManager(namespace2, workspace2)
wm2.create_workspace(wm)

Running jobs

Submit jobs:

wm.create_submission(config_namespace, config_name, sample_id, 'sample', use_callcache=True)
wm.create_submission(config_namespace, config_name, sample_set_id, 'sample_set', expression='this.samples', use_callcache=True)
wm.create_submission(config_namespace, config_name, participant_id, 'participant', expression='this.samples_', use_callcache=True)

Monitor jobs:

wm.get_submission_status()

Get runtime statistics (including cost estimates):

status_df = wm.get_sample_status(config_name)
workflow_status_df, task_dfs = wm.get_stats(status_df)

Re-run failed jobs (for a sample set):

status_df = wm.get_sample_set_status(config_name)
print(status_df['status'].value_counts())  # list sample statuses
wm.update_sample_set('reruns', status_df[status_df['status']=='Failed'].index)
wm.create_submission(config_namespace, config_name, sample_set_id, 'reruns', expression=this.samples, use_callcache=True)

Contents

Including additional FireCloud Tools (enumerated below)

workflow_time
create_workspace
delete_workspace
upload_samples
upload_participants
update_participant_samples
update_attributes
get_submission_status
get_storage
get_stats
publish_config
get_samples
get_sample_sets
update_sample_set
delete_sample_set
update_configuration
check_configuration
get_google_metadata
parse_google_stats
calculate_google_cost
list_methods
get_method
get_method_version
list_configs
get_config
get_config_version
print_methods
print_configs
get_wdl
compare_wdls
compare_wdl
redact_outdated_method_versions
update_method
get_vm_cost

Usage

Some functionality depends on the installed gsutil.

When using PY3 this creates a potential issue of requiring multiple accessible python installs.

Remediate this issue by defining an env variable for gsutil python

# replace path with path to local python 2.7 path.
# if using pyenv the following should work
# (assuming of course 2.7.12 is installed)
export CLOUDSDK_PYTHON=/usr/local/var/pyenv/versions/2.7.12/bin/python

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

firecloud-dalmatian-0.0.13.tar.gz (47.2 kB view details)

Uploaded Source

Built Distribution

firecloud_dalmatian-0.0.13-py3-none-any.whl (47.8 kB view details)

Uploaded Python 3

File details

Details for the file firecloud-dalmatian-0.0.13.tar.gz.

File metadata

  • Download URL: firecloud-dalmatian-0.0.13.tar.gz
  • Upload date:
  • Size: 47.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for firecloud-dalmatian-0.0.13.tar.gz
Algorithm Hash digest
SHA256 8ffeb5234aa2549d3cd4d3c85c2e49755c93ba6e6261bc636821b16a5334419d
MD5 c1fd2a9a389a851d28ba914415be234b
BLAKE2b-256 f36685962e00c565c0088c442b0d9620a9537c9f0c037387968525a29c077749

See more details on using hashes here.

File details

Details for the file firecloud_dalmatian-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: firecloud_dalmatian-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 47.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for firecloud_dalmatian-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 bccbef4247931de31871997bb35adf73258aa23ff00da932eccdb01ae9a2fe0f
MD5 0060c9e01c392ccf72a8a36940a782fb
BLAKE2b-256 c186b1aceb4022f8bf03d4c3f388a94b06f8ac044f3f058e45742725a0651a96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page