A simple async workflow engine for interfacing with FirecREST.
Project description
fireflow
A simple async workflow engine for interfacing with FirecREST.
The workflow engine uses pyfirecrest to interface with the REST API.
See also the https://github.com/eth-cscs/firecrest demo server.
Usage
After installing the package, the fireflow
command is available.
You can then create a workflow database from a YAML file, such as example_setup.yml
:
clients:
- label: test-client
client_url: "http://localhost:8000/"
client_id: "firecrest-sample"
client_secret: "b391e177-fa50-4987-beaf-e6d33ca93571"
token_uri: "http://localhost:8080/auth/realms/kcrealm/protocol/openid-connect/token"
machine_name: "cluster"
work_dir: "/home/service-account-firecrest-sample"
small_file_size_mb: 5
codes:
- label: test-code1
client_label: test-client
script: |
#!/bin/bash
#SBATCH --job-name={{ calc.uuid }}
mkdir -p output
echo '{{ calc.parameters.echo_string }}' > output.txt
calcjobs:
- label: test-calcjob1
code_label: test-code1
parameters:
echo_string: "Hello world!"
download_globs:
- output.txt
- label: test-calcjob2
code_label: test-code1
parameters:
echo_string: "Hello world 2!"
download_globs:
- output.txt
Then run fireflow init -a example_setup.yaml
, which will create a database in a .fireflow_project
folder.
You can list all the calcjobs with:
$ fireflow calcjob tree
Calcjobs 1-2 of 2
└── 1 - test-client
└── 1 - test-code1
├── 1 - test-calcjob1 ▶
└── 2 - test-calcjob2 ▶
You can then run all the calcjobs with:
$ fireflow run
2023-02-07 20:10:58:fireflow.process:REPORT: PK-1: Uploading files to remote
2023-02-07 20:11:00:fireflow.process:REPORT: PK-2: Uploading files to remote
2023-02-07 20:11:01:fireflow.process:REPORT: PK-1: submitting on remote
2023-02-07 20:11:03:fireflow.process:REPORT: PK-2: submitting on remote
2023-02-07 20:11:05:fireflow.process:REPORT: PK-1: polling job until finished
2023-02-07 20:11:06:fireflow.process:REPORT: PK-2: polling job until finished
2023-02-07 20:11:08:fireflow.process:REPORT: PK-1: copying from remote folder
2023-02-07 20:11:09:fireflow.process:REPORT: PK-2: copying from remote folder
2023-02-07 20:11:13:fireflow.process:REPORT: PK-1: parsing output files
2023-02-07 20:11:13:fireflow.process:REPORT: PK-1: paths: ['job.sh', 'output.txt', 'slurm-147.out']
2023-02-07 20:11:13:fireflow.process:REPORT: PK-2: parsing output files
2023-02-07 20:11:13:fireflow.process:REPORT: PK-2: paths: ['slurm-148.out', 'job.sh', 'output.txt']
The calcjobs run asynchronously, with the steps:
prepare for submission
: create the job scriptcopying to remote folder
: copy the job script and input files to the remote foldersubmitting on remote
: submit the job script to the schedulerpolling job until finished
: poll the job status until it is finishedcopying from remote folder
: copy the output files from the remote folderparsing output files
: parse the output files and store the results in the database
Aims
- Minimise the number of requests to the server
Upstream o AiiDA
- Print the job script, for debugging
- Add customisation of
sqlalchemy.engine
logging https://docs.sqlalchemy.org/en/20/core/engines.html#configuring-logging
https://chat.openai.com/chat/e453e10b-19fd-46a8-9cfb-0c8d31d1a60d
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fireflow-0.0.1.tar.gz
.
File metadata
- Download URL: fireflow-0.0.1.tar.gz
- Upload date:
- Size: 30.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.28.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c03b2335dbb5909c554a2b736a37fbd757bc405844f7b698b2345a2d7542190d |
|
MD5 | 72f44b6e0d50618bd57833ff1ee91967 |
|
BLAKE2b-256 | 7049aa93cc5e5444f69e64b88c44651b2140dbca4e6d0b8d396de0a8bc2496c0 |
File details
Details for the file fireflow-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: fireflow-0.0.1-py3-none-any.whl
- Upload date:
- Size: 30.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.28.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7bae75fc0eb150981409c25efaf47651c122f966394fbfde7ef8ff67b547e73 |
|
MD5 | 38f8a31ee5a6bdb95b983fa2330dba04 |
|
BLAKE2b-256 | 51f9351cc626ab49c4426385baaccba0fa87bfac1f24db19f65a71ec54684776 |